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Abstract

In this report we consider the following question: does a forensic expert need
to know exactly how the evidential material was selected? We set up a few simple
models of situations in which the way evidence is selected may influence its value
in court. Although reality is far from a probabilistic model, and one should be very
careful when applying theoretical results to real life situations, we believe that the
results in our models indicate how the selection of evidence affects its value. We
conclude that selection effects in forensic science can be quite important, and that
from a statistical point of view, improvements can be made to court room practice.

1 Introduction and problem statement
At a crime scene, a red fibre is found on the victim of a murder. After the police have
found a suspect, a search of his wardrobe reveals a red jumper. The jumper and fibre
are brought to the forensic lab, which has to check whether the fibre matches with the
jumper and if so, how strong this evidence is. Obviously, a very rare jumper should
be considered as stronger evidence than one bought at a large company like H&M.
But does the strength of the evidence depend on how and in what circumstances the
jumper was found? For example, is the evidence stronger if the suspect had no other
jumpers? Or does it make no difference?

This is an example of the following question posed to the Study Group by the
Netherlands Forensic Institute (NFI): does a forensic expert need to know how exactly
the evidential material was/is selected? This question is also relevant to the use of
video identification and DNA-databases. Suppose a video recording of a crime is
shown on television, and a number of suspects are brought to the attention of the police
by people who watched the broadcast. Can the same video material that was used to
select the suspects also be used as evidence in court? And if so, does the strength
of this video evidence, for example, depend on the number of people that know the
suspect? For the second example, suppose that somebody becomes a suspect because
his or her DNA is in a DNA-database, and matches a DNA-sample from a crime scene.
Clearly such databases do not include the DNA of the entire population. But does this

∗Vrije Universiteit Amsterdam
†Technische Universiteit Eindhoven
‡Radboud Universiteit Nijmegen

73



74 Proceedings of the 52nd European Study Group with Industry

make a difference? And should, after the selection of a suspect via his or her DNA,
this DNA match be discarded as evidence?

At the moment, the situation is usually as follows. When the evidence is pre-
sented, the fact that a suspect has been selected using, for example, video material, is
considered not to influence the value of the video material as evidence. Neither is the
number of clothes in someone’s wardrobe taken into account when fibres found on a
crime scene match with a suspect’s clothes and are used as evidence. This is some-
what alarming, since the judge cannot be expected to have knowledge of statistics,
and possible statistical corrections should be made before the evidence is presented
to him. On the other hand, the NFI expert handling the case is also not a statistician.
(S)he has the possibility to call in the help of statisticians, but does so only if (s)he
feels the need to do that. So the question posed to the Study Group can be seen as a
request for help in dealing with situations that seem straightforward, but in fact may
need statistical corrections.

In this report we answer this question in the following way. We set up a few sim-
ple models of situations in which the way evidence is selected may influence its value
in court. We then give expressions for the probability that the evidence found indeed
originates from the suspect, given that lab tests, or a broadcast of video material, links
the evidence to the suspect. From that we conclude if and how the selection of the
evidence influences this probability. Obviously, reality is far from any probabilistic
model, and one should be extremely careful when applying theoretical results to real
life situations. This is especially dangerous when statistics is used to prove that a
crime has been committed, see for example Van Lambalgen and Meester [4]. There-
fore, in the models discussed in this report this situation is excluded by assuming that
it is sure that a crime has been committed. Keeping these warnings in mind, we never-
theless believe that our simple models can teach us something about how the evidence
selection procedure affects the value of the evidence.

The report will adhere to the following structure. In Section 2 we explain the
notion of conditional probabilities and Bayes’ rule, which are used later on. A judge
might want to have an indication of the probability that a suspect is guilty given certain
evidence. Bayes’ rule allows us to express this probability in terms of the probability
that the evidence is found when the suspect is guilty, the probability that the evidence
is found when the suspect is innocent, and a so-called prior. In Section 3 we consider
a simple model of the situation where the police find a fibre on a crime scene that
matches a jumper from a suspect’s wardrobe. We argue that the number of jumpers
the suspect owns influences the evidential value of the fibre, and describe in what
way it does. In Section 4 we look at video evidence. Under simplifying assumptions,
we compute the probability that a suspect who is recognised on video, is actually the
person on the video material. Finally, in Section 5 we consider a different aspect of
the selection of evidence, namely the influence of non-matches between the suspect
and the available evidence. We argue that these non-matches may count as negative
evidence, and should therefore be taken into account as well. We finish the report with
some conclusions.
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2 Bayes’ rule and likelihood ratios
During a trial, the scientific analysis of the evidence found on the crime scene is re-
ported to the court by the forensic expert. In order to provide the judge with the means
to evaluate such evidence, the law allows/requires the forensic scientist to summarise
his expertise by means of a likelihood ratio (see [2]). Define

E := “Evidence at crime scene is matched with the suspect”;
H := “The suspect himself left the evidence”.

The likelihood under the hypothesis that the suspect is guilty is given by the con-
ditional probability P (E | H); the likelihood under the (null) hypothesis that the
suspect is innocent is given by P (E | Hc). matching the suspect at the crime scene,
then P (E | H) = 1. Hence, the likelihood ratio is defined as

LR =
P (E | H)
P (E | Hc)

.

Since the numerator is likely to be large, the crucial task of the forensic scientist
boils down to assigning a value to the denominator of the above formula. This means
evaluating the probability of a random match. In this evaluation procedure lies the
difficulty in reporting evidence, since the likelihood under the null hypothesis depends
on the assumptions made on the reference population, which might be hard to define.

A formalisation of the inferential process performed by the judge/juror is well ex-
pressed by Bayes’ theorem ([1]), one of the basic formulae in probability theory. This
theorem was first proposed by rev. Thomas Bayes in the 18th century and constitutes
the basis for the 20th century Bayesian school of statistical inference ([5]), as opposed
to the classical or frequentist school. Bayes’ theorem (also named Bayes’ rule for
its simplicity) expresses the posterior probability in terms of likelihoods and prior
probabilities:

P (H | E) =
P (H ∩ E)

P (E)
=

P (E | H)P (H)
P (E)

=
P (E | H)P (H)

P (E | H)P (H) + P (E | Hc)P (Hc)
. (1)

Here the denominator in the last term follows from the rule of total probability. The
appeal of this formulation is due to a foundational inference argument, namely that the
actual matter of interest in the inductive process is the posterior probability. This is
the probability of the hypothesis (H) given the evidence (E), and not the likelihood or
inverse probability, which is the probability of the evidence (E) given the hypothesis
(H). In particular, it is the conditional event H | E that the judge will, more or less
consciously, probabilistically evaluate to give the sentence, while the scientist presents
his probability estimate on E | H . Dividing the numerator and denominator of (1) by
P (E | H)P (H), we obtain the following formula:

P (H | E) =
(

1 +
P (Hc)
P (H)

P (E | Hc)
P (E | H)

)−1

. (2)
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We can see how the posterior probability depends on the prior odds, i.e., the ratio
P (Hc)/P (H) between the a priori probabilities of the hypotheses and the inverse of
the likelihood ratio as defined above. The prior odds give a formal way to incorporate
non-statistical evidence into the model. Observe that although it is tempting to think
so, a large likelihood does not automatically imply a large probability that the suspect
is guilty.

Bayesian inference is a generalisation of the exclusively likelihood based classical
inference. The relevance of a Bayesian modelling approach is also more appropriate
when dealing with unique cases and often limited pieces of evidence as in the forensic
setting, where doing justice cannot be achieved via the long run philosophy underlying
the classical approach ([3]). For this reason, although the forensic scientist cannot or
is not allowed to specify priors on the suspect’s guilt, it is useful for him to summarise
the judicial inductive process before presenting results in court, as will be seen in the
following section.

3 The jumper model
In this section we consider a simple example that shows that for computing or estimat-
ing the probability that a suspect is guilty, it is necessary that the information about the
evidence and the way it is selected should be as complete as possible. The example we
give is not too realistic, but it teaches us a lot about more realistic models, and partly
answers the NFI question.

3.1 Introduction
The case is as follows. Suppose an event has taken place at which someone, (the
donor) has left a fibre of his jumper on some other person (the victim). We do not
know anything about this donor. In order to find the donor, we investigate the jumpers
in the wardrobe of an arbitrary person (for notational convenience, this person is called
the suspect). We find a jumper made of a fibre of exactly the same type as was found
on the victim. We want to compute the probability that our suspect is in fact the real
donor of the fibre on the victim, given the evidence found, i.e., given that the fibres
of the suspect and those on the victim match. The question we ask ourselves is how
much we need to know about the evidence found: is it sufficient to know that one of
the jumpers of the suspect matches the fibre on the victim? Or do we for example also
need to know how many of his jumpers consist of fibres of other types?

In Section 3.2 we specify our assumptions. These allow us to compute the prob-
ability that our suspect is the donor in Section 3.3. In Section 3.4 we generalise this
model to the case that more than one fibre is found on the victim. Finally, Section 3.5
deals with our conclusions and possible extensions of the model.

3.2 Assumptions and notation
We make the following assumptions to model the situation described above.

1. Only one fibre is found on the victim; this fibre is of type Y and does not
belong to the victim. (We assume all fibres in the world can be categorised into
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a number of different types that the forensic expert can tell apart.)

2. The fibre found on the victim was transferred during a meeting between the vic-
tim and the donor, and originates from the donor’s jumper. We call the moment
of this meeting the transfer moment.

3. Since the transfer moment nobody has thrown away or hidden any jumpers.

4. Every jumper consists of only one type of fibre.

5. The relative frequency of the total population wearing jumpers of a specified
fibre type at the transfer moment is known. In particular, the relative frequency
of the population wearing a jumper of fibre type Y is gY . This can be interpreted
as the probability that some random person was wearing a jumper of fibre type
Y at the transfer moment.

6. The probability that the suspect was wearing a jumper of fibre type Y at the
transfer moment is known and denoted by fY .

7. The collection of jumpers of any person is independent of him being the donor
or not.

Furthermore, we write E1 for the event that the fibre found on the victim is of type
Y and E2 for the event that we found a fibre of type Y in the collection of jumpers
of the suspect. The event that the suspect is the donor of the fibre on the victim is
denoted by D.

3.3 Computations
We are ready to compute the probability that our suspect is the donor of the fibre on
the victim given the evidence found. Using (2), we compute

P (D | E1 ∩ E2) =
(

1 +
P (Dc)
P (D)

P (E1 ∩ E2 | Dc)
P (E1 ∩ E2 | D)

)−1

=
(

1 +
P (Dc)
P (D)

P (E2 | Dc)P (E1 | Dc ∩ E2)
P (E2 | D)P (E1 | D ∩ E2)

)−1

=
(

1 +
P (Dc)
P (D)

P (E2)gY

P (E2)fY

)−1

=
(

1 +
P (Dc)
P (D)

gY

fY

)−1

.

For third equality we used assumptions 5 up to 7. Observe that if gY is smaller (the
fibre is rare), the probability of the suspect being the donor is larger. Also, if fY is
smaller (the suspect does not wear the jumper of fibre type Y often), the probability
of the suspect being the donor is larger. In the special case that the suspect owns
k jumpers and wears those with equal frequency, we have fY = 1/k. Hence, the
more jumpers the suspect has, the smaller is the probability that he is the donor (in
this report we use male pronouns for the suspect and the donor). This seems quite
reasonable: a person owning thousand jumpers is very likely to match with the fibre
on the victim, but the strength of this match is, of course, very low.
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3.4 The jumper model with more than one fibre
In this section we consider the situation that a crime is committed at which the offender
possibly donated a fibre of his jumper to the victim. We find a number of types of fibres
at the crime scene, which surely originate from some jumpers. Based on the place at
the crime-scene where a particular fibre is found, we may assign some probability to
the event that that particular fibre was donated at the moment of the crime. As in the
previous example, we investigate the wardrobe of a suspect to see if there are jumpers
with fibres that match with fibres found on the crime scene.

We are interested in the questions “does the probability that the suspect is the
offender, given that there is a match, depend on the number of fibres found at the
crime scene?” and “does this probability depend on the number of matches found?”

Our assumptions are the same as in the previous section with the following excep-
tions.

1’. There are n types of fibres found at the victim, the ith type of fibre is called Yi

for i ∈ {1, . . . , n}.

2’. The a priori probability that the ith type of fibre is connected to the crime is
hi. These his are independent of the identity of the donor, if we do not take his
collection of jumpers into account.

8. At most one person donated a fibre at the crime, so there is only one offender;
if there is a donor, he donated at most one fibre.

From these assumptions we see that
∑n

i=1 hi ≤ 1. Note that it is possible that none
of the fibres is left by the offender, the probability of that event is 1−

∑n
i=1 hi.

Write E
(i)
1 for the event that the i-th type of fibre on the crime scene is of type

Yi and E
(i)
2 for the event that a fibre of type Yi is in the collection of jumpers of the

suspect. The event that the i-th type of fibre was donated at the moment of the crime
is C(i) and the event that the suspect is the donor of the fibre donated at the moment
of the crime is D∗. Write V for the collection of fibre types at the crime scene and W
for the collection of fibre types from jumpers of the suspect. Denote the intersection
of V and W by A, so A is the set of types of fibres that are both in the collection of
the suspect and at the crime scene (the matches).

We are interested in P (D∗ |
⋂

j∈V E
(j)
1 ,
⋂

j∈W E
(j)
2 ), the probability that the

suspect donated the fibre at the moment of the crime, given the evidence. Because the
events C(i) are disjoint, and D∗ = ∪iC

(i), we can write

P (D∗ |
⋂
j∈V

E
(j)
1 ,

⋂
j∈W

E
(j)
2 ) = P (

⋃
i∈V

{D∗ ∩ C(i)} |
⋂
j∈V

E
(j)
1 ,

⋂
j∈W

E
(j)
2 )

=
∑
i∈V

P (D∗ ∩ C(i) |
⋂
j∈V

E
(j)
1 ,

⋂
j∈W

E
(j)
2 )

=
∑
i∈A

P (D∗ ∩ C(i) | E(i)
1 ∩ E

(i)
2 ).

Here we used that the event {D∗∩C(i)} is independent of E
(j)
1 and E

(j)
2 for i 6= j and

that the summand is 0 if the fibre at the crime scene is not in the collection of jumpers
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of the suspect. We can use the results of the previous section to conclude that:

P (D∗ |
⋂
j∈V

E
(j)
1 ,

⋂
j∈W

E
(j)
2 ) =

∑
i∈A

P (C(i) | E(i)
1 ∩ E

(i)
2 )P (D∗ | C(i) ∩ E

(i)
1 ∩ E

(i)
2 )

=
∑
i∈A

hi

(
1 +

P (D∗c | C(i))
P (D∗ | C(i))

gYi

fYi

)−1

=
∑
i∈A

hi

(
1 +

P (D∗c)
P (D∗)

gYi

fYi

)−1

,

where the second equation holds since under the condition that a certain fibre was
donated at the crime, everything is the same as in the situation where only one fibre
is found. The last equation holds since the probability of being the donor does not
depend on the fibre found if nothing is said about the collection of jumpers of the
suspect. Note that the probability that the suspect is the offender may be larger than
the probability computed, because he may have committed the crime, while he did not
donate any fibre.

If it is certain that one of the fibres found was donated at the moment of the crime
and if all fibres have the same probability to have been donated at the moment of the
crime, 1/n, we get

P (D∗ |
⋂
i∈V

E
(i)
1 ,

⋂
i∈W

E
(i)
2 ) =

∑
i∈A

1
n

(
1 +

P (D∗c)
P (D∗)

gYi

fYi

)−1

.

So the probability that the suspect is the offender decreases when the fraction of fibres
on the victim that match with jumpers in the collection of the suspect decreases.

3.5 Conclusions and possible extensions of the model

In our (very basic) model we have shown that many things should be reported in order
to interpret the evidence well. Not only that a jumper in the collection of the suspect
and a fibre found at the crime scene match, but also how often the suspect wears that
particular jumper and how many fibres are found at the crime scene. We have shown
that the number of jumpers in the wardrobe and the number of fibres at the crime scene
influence the probability that the suspect is the offender.

In this section we have analysed a very basic example dealing with evidence in
our model. We were forced to make many assumptions in order to get some results.
In the future, efforts can be made to relax some of the assumptions. For example, one
could introduce uncertainty in the matching of two fibres. This seems reasonable since
the forensic expert could make a mistake when comparing two fibres. One may also
think of dealing with the possibility that more than one type of fibre is donated at the
transfer moment, for example, jumper fibres and jeans fibres. Finally, in this example
we had only once piece of evidence, namely the match of some fibre. In the case that
there is more evidence, e.g., blood stains, or footprints, these other pieces of evidence
should also be incorporated in the model.
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4 The video recognition model
In this section, we construct a model for the following situation. A crime has been
committed and thanks to camera surveillance some video material of the criminal is
available. This material is then shown to the general public via a television show, like
Opsporing verzocht.

Obviously, if a person has more acquaintances, the probability that this person is
reported is larger. A question that arises naturally is the following. Given a person has
been reported, does the probability that he is guilty depend on his number of acquain-
tances? In other words, should the forensic expert or the judge take into account that
the suspect was a very social person, or a very solitary one? In order to answer this,
we consider a simple model with the following assumptions:

• The criminal is known to be Dutch and the video material is only shown on
Dutch television.

• There is a group of l look-alikes in the Netherlands. These are people who
cannot be distinguished from the person on the video by any means.

• One of the look-alikes, called ξ, has n acquaintances.

• Each of these acquaintances reports ξ, independently, with a probability p.

Define the following events:

S := “ξ is the person on the video”,
R := “ξ is reported”.

Applying Bayes’ rule, we find

P (S | R) = P (S)
P (R | S)

P (R)
= P (S) =

1
l
, (3)

where the second equality holds since all look-alikes look like the person on the video,
no matter whether they really are him/her or not. The last identity holds true since
there are l look-alikes in the Netherlands.

We see that in this model there is no dependence on either n or p, because we treat
all look-alikes as indistinguishable. If we let go of this condition, we get a slightly
more sophisticated model, with the following new assumptions.

• The criminal is known to be Dutch and the video material is only shown on
Dutch television.

• Some person called ξ has n acquaintances.

• P (“one acquaintance reports ξ” | S) = p.

• P (“one acquaintance reports ξ” | Sc) = q.
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Typically, we have q ≤ p. Under these new assumptions, applying Bayes’ rule (2)
gives

P (S | R) =
(
1 +

P (Sc)
P (S)

P (R | Sc)
P (R | S)

)−1

. (4)

From

P (R | S) = 1− (1− P (“one acquaintance reports ξ” | S))n = 1− (1− p)n,

P (R | Sc) = 1− (1− P (“one acquaintance reports ξ” | Sc))n = 1− (1− q)n,

it follows that

P (S | R) =
(
1 +

P (Sc)
P (S)

1− (1− q)n

1− (1− p)n

)−1

.

If p, q � 1/n, then using Taylor’s formula yields

P (S | R) ≈
(
1 +

P (Sc)
P (S)

q

p

)−1

.

Note that n does not play a role in this approximation. On the other hand, if q � 1/n,
q � p, and p � 1/n, then approximating (1− p)n ≈ 0 yields

P (S | R) ≈
(
1 +

P (Sc)
P (S)

qn
)−1

.

Assuming that P (Sc) � P (S), the RHS decreases like 1/n. So in this case, given
that a person is reported, the more acquaintances he has, the less likely it is that he is
indeed the person on the video. This outcome seems to be counter-intuitive, but can
be explained as follows. The more acquaintances a person has, the more likely it is
that he is reported. However, the probability that he is the person on the video, and is
reported, namely P (S)(1− (1− p)n), does not change so much, as we assumed that
(1 − p)n ≈ 0. Hence, the probability that he really is the person on the video given
that he is reported, decreases.

5 The influence of negative evidence
In criminal investigations not only positive matching results are found. Usually, neg-
ative results are not used in court. The question arises whether this is correct. For
instance, in the basic jumper model considered in Section 3, what conclusion can be
drawn if we do not find a match? Does this imply that the suspect is not very likely to
be the offender, or does it hardly have any influence on the probability that the suspect
is guilty?

Observe that the basic jumper model concentrates only on the probability that the
suspect is the donor of the fibre found on the victim. In this section we extend the
basic jumper model in order to concentrate on the probability that the suspect is the
offender. In many crime scenes there are traces that could have been donated by the
offender, like fibres. On the other hand, there may also be traces that are very likely
to have been donated by the offender, like bullets or blood. Further, it is not only the
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nature of the trace that is important here, but also the exact place where it was found.
Fibres found on the neck of a strangled person are more likely to be an offender’s trace
than fibres found under the shoes.

Let us assume that based on this kind of information, for every trace T the forensic
expert can assign a probability hT that this trace was donated by the offender. In the
extended model we define the following possible events:

TY := “Trace found on the victim is of material Y ”
TO := “Trace found on the victim is donated by the offender”
SO := “Suspect is the offender”
SY := “Suspect can be linked to material Y .”

The assumptions of the basic jumper model still apply to this extended model.
However, there is no need to restrict the model to fibre matching. For instance, if we
are considering a case of DNA-matching, all we have to do is assume that everybody
has only one jumper (DNA-pattern). Again, fY and gY are the relative frequencies
of the suspect respectively the whole population carrying material of type Y at the
moment of the trace transfer. In the case of DNA we have fY = 1, since people are
not able to change their DNA profile. For the probability that the suspect is guilty
given the evidence of a positive match, we write, using (2):

P (SO | SY ∩ TY ) =
(

1 +
P (SOc)
P (SO)

P (SY ∩ TY | SOc)
P (SY ∩ TY | SO)

)−1

=
(

1 +
P (SOc)
P (SO)

P (SY | SOc)
P (SY | SO)

P (TY | SOc ∩ SY )
P (TY | SO ∩ SY )

)−1

.

Since we assumed that there is no dependence between someone’s blood type (or
type of fibre that (s)he is wearing) and his or her criminal intent, we have P (SY |
SOc)/P (SY | SO) = 1. Further,

P (TY | SOc ∩ SY ) = P (TY ∩ TO | SOc ∩ SY )
+ P (TY ∩ TOc | SOc ∩ SY )

= P (TO | SOc ∩ SY )P (TY | TO ∩ SOc ∩ SY )
+ P (TOc | SOc ∩ SY )P (TY | TOc ∩ SOc ∩ SY )

= hT g′Y + (1− hT )gY ,

where g′Y is the relative occurrence of type Y in the whole population minus our
suspect. If the trace consist of extremely rare material (like large DNA samples), then
g′Y may differ substantially from gY . In fact, for unique material belonging to the
suspect, g′Y = 0.

P (TY | SO ∩ SY ) = P (TY ∩ TO | SO ∩ SY )
+ P (TY ∩ TOc | SO ∩ SY )

= P (TO | SO ∩ SY )P (TY | TO ∩ SO ∩ SY )
+ P (TOc | SO ∩ SY )P (TY | TOc ∩ SO ∩ SY )

= hT fY + (1− hT )gY ,
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then gives

P (SO | SY ∩ TY ) =
(

1 +
P (SOc)
P (SO)

hT g′Y + (1− hT )gY

hT fY + (1− hT )gY

)−1

. (5)

This result demonstrates the importance of hT . If hT = 1, we are sure that the donor
of the trace is the offender. Therefore, if we substitute hT = 1 in (5), we find the
equivalent result for the basic jumper model discussed in Section 3. On the other
hand, if hT = 0, the likelihood ratio is 1, and the trace gives no information about the
offender.

We turn to the case that the trace found on the victim cannot be matched to the
suspect. As in the positive case, we find

P (SO | SY c ∩ TY ) =
(

1 +
P (SOc)
P (SO)

P (TY | SOc ∩ SY c)
P (TY | SO ∩ SY c)

)−1

. (6)

Observe that P (TY | SOc ∩ SY c) = g′Y . For the denominator we find

P (TY | SO ∩ SY c) = P (TO | SO ∩ SY c)P (TY | TO ∩ SO ∩ SY c)
+ P (TOc | SO ∩ SY c)P (TY | TOc ∩ SO ∩ SY c)

= (1− hT )g′Y .

Here we used that P (TY | TO ∩ SO ∩ SY c) = 0. Combining this with (6) yields

P (SO | SY c ∩ TY ) =
(

1 +
P (SOc)
P (SO)

1
(1− hT )

)−1

.

The likelihood ratio (1 − hT ) ≤ 1 depends only on hT . We conclude that in general
a suspect is less likely to be an offender if no trace can be matched to the suspect. If
the police are quite sure that the trace originates from the offender, the likelihood ratio
turns out to be very much in favour of the suspect. However, we have to bear in mind
that in this model we assumed that no evidence has been destroyed by the suspect. For
instance, if we know that the suspect has destroyed the clothes he was wearing during
the crime, a negative result on fibre matching does not have any consequence for the
likelihood ratio. This kind of complication is hard to incorporate in the model, since
the probability that a suspect destroys his clothes depends highly on his innocence,
and is hard to estimate. Luckily, this complication does not occur in case of blood
traces, or any other traces that originate from the human body. Since these traces are
used in many criminal investigations, the above model may still be useful.

Concluding this section, we remark that in many crime cases a lot of traces are
collected. If only one of these traces can be linked to the suspect, this trace will be
presented in court as evidence, and the other traces will be left out. This selection
of evidence seems to be unfair, since the evidential value of the matching trace can
be heavily weakened by all traces that cannot be linked to the suspect, especially if
some of them were estimated in advance to have a high probability of being offender’s
traces. We conclude that selection effects in forensic science can be quite important,
and from a statistical point of view, improvements can be made to court room practice.
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6 Conclusions
To analyse the effect of the way in which evidence is selected, we have set up a very
simple model for the matching of fibres found on the victim and clothes belonging
to the suspect. In this model we have shown that many things should be reported in
order to properly interpret the evidence. We have shown that, for example, the number
of jumpers in the wardrobe and the number of fibres at the crime scene influence the
probability that the suspect is the offender. Furthermore, in an extension of this jumper
model, we have shown that the evidential value of a match can be heavily weakened
by all traces that cannot be linked to the suspect.

We stress that we have proved these results in our probabilistic models, which
are far from real life situations. Nevertheless, the results we obtained may guide our
reasoning in this matter. We conclude that selection effects in forensic science play an
important role, and that efforts should be made to improve the statistical interpretation
of evidence in court room practice.
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