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The rotor spinning process for fibre pro-
duction

P. den Decker, H. Knoester, H. Meerman†, K. Dekker, W. van Horssen,
C. Vuik, P. Wesseling‡, G. Prokert§, B. van ’t Hof\, F. van Beckum]

1. Introduction

At Tejin Twaron in Arnhem new ways of producing fibres are being
developed. One of the interesting techniques is the so-called Rotor
Spinning Process. In principle, this process looks a lot like the making
of sugarflos (or cotton candy) at a fair. Here, however, we deal with
a polymer-filled disc with tiny holes. The polymer is pressed, due to
the centrifugal forces, through the holes to the outside. This process is
already in operation at the company; at Tejin Twaron there is also a
pilot machine in which variations in the process and geometry can be
tested.
The liquid polymer solidifies and becomes a thin filament on the exterior
boundary of the machine. The purpose of the work during the week
”Mathematics with Industry” is to verify an existing model on the basis
of a momentum equation and mass balance and if possible to improve
the model.
A first order approximation of the path of the filament (without mod-
elling air friction) in the space between disc and exterior boundary of
the machine exists already. Also a description of the path with wa-
ter cooling and air friction is available. However, the model can be
improved: certain states of the rotor spin process should be approxi-
mated in a better way. The ultimate purpose of the modelling in more
detail reads:

1 Try to describe the situation (process and geometry) in which
continuous filaments can be generated. Breaking of filaments
may cause problems in the use of the material if the length of
the filament is below a critical length.

2 Try to determine the circumstances (process and geometry)
in which the length of a broken filament can be determined
beforehand. In this case fibres can, in principle, be produced.

3 Determine the effect of processing conditions (e.g. tempera-
ture, rotor speed) in the present operating situation in order
to achieve a robust production process.
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During the workshop we mainly focused on the existing model used
at Tejin Twaron, a boundary-value problem for differential equations,
which is described in Section 2. As shooting techniques from the NAG-
library did not yield acceptable results at Tejin Twaron, we considered
the model from various perspectives. One subgroup tried to solve the
model numerically, using MATLAB, by Picard-iteration starting from
a model without viscosity. A second subgroup analyzed the model
using perturbation theory in the neighborhood of the orifice and the
last subgroup derived a time-dependent description including an energy
balance. Their results are presented in the subsequent sections. Finally
we present our conclusions and ideas for further research.

2. The mathematical model

A disc with radius Rrot is rotating anti-clockwise with angular velocity
ω. The polymer (density ρ and viscosity η) is extruded from an ori-
fice, and subsequently moves in the direction of the coagulator, which
has radius Rcoag. In a stable stationary process the trajectory of the
polymer, the so-called spinning line, will be fixed in a rotating coor-
dinate system. Therefore, we omit the time-derivatives in the model,
but consider the movement of the polymer along the spinning line (see
Fig. 1). Then, the independent variable is s, the arc-length along the
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Figure 1. Spinning line in rotating coordinate system

spinning line, and the dependent variables are the position x, y of the
spinning line, the velocity v of the polymer along the spinning line, and
the diameter A of the spinning line. The variables x, y, s satisfy the
equation

(
dx

ds

)2

+

(
dy

ds

)2

= 1,(1)
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and the balance of mass gives a relation between A and v, as the mass
flux Φ should be constant:

ρAv = Φ.

In the simple model without air friction we consider the viscous forces,
the centrifugal force and the Coriolis force acting on an element of the
spinning line of size ∆s and position x, y:

Fcentr = ∆s ρAω2

[
x
y

]
,

Fcor = 2∆s ρAωv

[
dy
ds

−dx
ds

]
,

Fvisc = ∆s

[
d
ds

(
F dx

ds

)
d
ds

(
F dy

ds

)
]

.

Here, F denotes the norm of the viscous force vector at s. Balance of
momentum then leads to the second order differential equations

(F − Φv)
d2x

ds2
= −Φω2x

v
− 2Φω

dy

ds
− dx

ds

d

ds
(F − Φv) ,(2)

(F − Φv)
d2y

ds2
= −Φω2y

v
+ 2Φω

dx

ds
− dy

ds

d

ds
(F − Φv) .(3)

Further it is assumed that the polymer is Newtonian, so the viscous
force satisfies

dv

ds
=

ρv

η

F

Φ
.(4)

Instead of solving the differential equations (2-4), together with the
algebraic condition (1), it seemed more appropriate to replace (1) by a
differential equation. Taking the inner product of vectorial momentum
equations (2-3) and the vector

(
dx

ds
,
dy

ds

)T

,

using (1) and its differentiated form, leads to

dF

ds
= Φ

dv

ds
− Φω2

v

(
x
dx

ds
+ y

dy

ds

)
.(5)

The initial conditions for the system (2-5) are

x(0) = Rrot, y(0) = 0, v(0) = v0, F (0) = F0,(6a)

dx

ds
= 1,

dy

ds
= 0, for s = 0.(6b)

The viscous force F0 is unknown and should follow from conditions im-
posed on the spinning line at the coagulator. As the arc length L of the
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spinning line at the coagulator is still unknown, we need two bound-
ary conditions. The first one is given by the radius of the coagulator;
moreover the velocity of the spinning line is assumed to be known:

x(L)2 + y(L)2 = Rcoag, v(L) = ve.

It is easy to solve these equations in case of zero viscosity. Then, the
model reduces to the problem of bullets fired from a rotating disc.
Obviously, they move in a straight line, and the solution in a rotating
coordinate system is given by

x(t) = (Rrot + v0t) cos(ωt) + ωRrott sin(ωt),(7a)

y(t) = −(Rrot + v0t) sin(ωt) + ωRrott cos(ωt),(7b)

v(t) =
√

(v0 + ω2Rrott)2 + (ωv0t)2,(7c)

where s and t are related by v = ds/dt. A solution is presented in Fig.
2.
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Figure 2. Spinning line without viscous forces

Realistic values for the physical parameters are in the viscous case:

ρ = 1700 kg/m3, η = 1200 Pa s, v0 = 1 m/s,

Rrot = 0.15 m, Rcoag = 0.3 m, A(0) = π/64 10−6 m2.

Originally, it was decided to use shooting techniques for system (2-5)
with appropriate choices for F0 in (6). The differential equations were
solved by a routine for stiff systems from the NAG-library. However,
difficulties arose as the solution appeared to be extremely sensitive to
the choice for the initial viscous force. In many cases the solution
became unstable and sometimes the spinning line moved in the wrong
direction.
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3. Numerical solution methods

The system of 2 second-order and 2 first-order differential equations
(2-5) could be discretized as a boundary-value problem on the interval
[0, L], where the value of L is yet unknown. This approach, however,
would involve some programming effort, resulting in a large system of
nonlinear equations, which had to be solved several times to find an
appropriate value for L. Moreover, it was not a priori clear how to
choose the grid points, as we suspected that an equidistant grid would
not do. Therefore we deemed this approach not to be feasible within the
limited time available, and beyond that, in case of failure the intrinsic
difficulty in the model would not be revealed.
We then decided to split the system into two parts, such that each could
be solved in a straightforward manner. The second-order equations for
x and y, (2-3) can be solved by an integration method when F and v
are known. Once x and y are known, a boundary-value technique could
be applied to solve the second-order system for v,

η

ρ

(
−d2v

ds2
+

1

v

(
dv

ds

)2
)

+ v
dv

ds
= ω2

(
x
dx

ds
+ y

dy

ds

)
,(8)

which is obtained by substitution of (4) into (5). For simplicity, we
impose here a Neumann boundary condition at s = L

dv

ds
= 0, (s = L).

To start with, we solve the non-viscous model (η = 0) which has the
known solution given by (7). Thereafter, we alternate solving system
(2-3) and equation (8) using a Picard-iteration, with the idea that this
process might converge to the solution of the complete system (2-5). In
doing so, we encountered several problems.
First, observe that the second derivatives in (2-3) are multiplied by the
factor F − Φv, so the system becomes singular whenever this factor
changes sign, and the solution will explode. This phenomenon does not
occur for small values of the viscosity η, as F is then small too. How-
ever, increasing the viscosity a value of η is reached for which the system
(2-3) could not be solved anymore. Meanwhile, in discussions during
the workshop, doubt arose about the validity of the initial condition
involving the direction of the velocity, given by (6b), in the non-viscous
case. Therefore, we decided to replace these conditions by

dy

ds
= vy,

dx

ds
=

√
1− v2

y,(9)

and tried to apply the Picard-iteration for several values of vy. It ap-
peared that this change of the direction of the spinning line at the
orifice had a stabilizing effect on the solution of the system. Moreover,
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the success of the Picard-iteration was very sensitive to the choice of
the angle, determined by vy, at the orifice (see Table 3). The quotient

η/ρ vy result
0.001 0 4 iterations successfull
0.01 0 unstable

−0.1 4 iterations successfull
−0.2 unstable

0.1 −0.1 unstable
−0.4 1 iteration successfull

0.2 −0.45 1 iteration successfull
0.3 −0.5 1 iteration successfull
0.4 −0.5 1 iteration successfull
0.5 −0.5 1 iteration successfull
0.7 −0.5 wrong trajectory

−0.6 1 iteration successfull
−0.7 1 iteration successfull

Table 3. Influence of η/ρ and vy on Picard iteration

0.7 is derived from the physical values of the parameters. We present
the trajectories obtained after 1 Picard-iteration for the starting val-
ues vy = −0.5 and vy = −0.7 in Fig. 3. It was possible to apply a
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Figure 3. Trajectories for vy = −0.5 (left) and vy =
−0.7 (right)

Picard-iteration in case of the initial condition vy = −0.5, the result-
ing trajectory, however, appears to be nonphysical. We conclude that
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both the solution process and the resulting trajectory are very sensitive
to the choice of the initial conditions, and that some effort might be
required to establish correct ones.
Secondly, we observed that the solution of the system (2-5) does not
satisfy the condition (1) in the initial phase of the integration. Al-
though (2-5) is mathematically equivalent to the original system (1-4)
the numerical solutions are not, and guard must be taken that the devi-
ation from (1) is not too strong. In a second experiment we solved the
initial phase of (2-5), using the Runge-Kutta order four method with a
very small step-size h, and measured the deviation from condition (1).
Table 4 shows the results for several initial conditions.

F0/Φ vy = 0 vy = −0.1 vy = −0.2 vy = −0.3 vy = −0.4 vy = −0.5
0.5 6.810−8 6.310−8 5.710−7 1.610−6 3.010−6 4.710−6

0.7 6.210−7 5.810−7 5.310−6 1.510−5 2.910−5 4.710−5

0.9 4.010−5 3.710−5 3.610−4 1.010−3 2.310−3 4.310−3

1.1 unstable unstable unstable unstable 5.810−2 1.110−2

1.3 unstable unstable 2.010−1 1.710−2 3.410−3 9.210−4

1.5 8.910−1 3.710−1 1.510−2 5.110−3 1.510−3 5.010−4

Table 4. Maximum of 1− ‖[dx
ds

, dy
ds

]‖ in the first 5 inte-
gration steps, h = 10−5

Notwithstanding the small step size, condition (1) is severely violated
in case vy=0 and F0 > Φ, whereas we observe improvement for larger
(negative) values for vy. Again, we conclude that nonzero initial condi-
tions for dy/ds should be considered. Moreover, it seems worth while
to write the equations (2-3) in conservation form, using (5),

(F − Φv)
d2x

ds2
=

Φω2

v

dy

ds

(
y
dx

ds
− x

dy

ds

)
− 2Φω

dy

ds
,(10a)

(F − Φv)
d2y

ds2
= −Φω2

v

dx

ds

(
y
dx

ds
− x

dy

ds

)
+ 2Φω

dx

ds
,(10b)

and use an integration method which preserves conservation. Prelimi-
nary calculations indicate that the Runge-Kutta method does not be-
come unstable for system (10) together with (4-5), although the ac-
curacy is low in the case F0/Φ = 1.1. As an alternative, one might
consider solving the differential algebraic system (1-4). In any case,
the trajectory near the orifice is extremely sensitive to perturbations.

4. Analytical results

First we eliminate the viscous force F from the equations (2-3), and
then the system is rewritten using v = ds/dt to equations with time t
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as independent variable, yielding

d2x

dt2
− ω2x− 2ω

dy

dt
=

η

ρ

d

dt

(
1

v3

dv

dt

dx

dt

)
,

d2y

dt2
− ω2y + 2ω

dx

dt
=

η

ρ

d

dt

(
1

v3

dv

dt

dy

dt

)
,

(
dx

dt

)2

+

(
dy

dt

)2

= v2.

Now, the variables x, y, v and t will be rescaled

t̃ = ωt, v = ωRrotṽ,

x = Rrotx̃, y = Rrotỹ,

so the equations become dimensionless. Eliminating ṽ, dropping the ˜
for convenience and denoting the differentiation with respect to t by ′

yields the singularly perturbed system

x′′ − x− 2y′ =
η

ρωR2
rot

(
(x′x′′ + y′y′′) x′

(x′x′ + y′y′)2

)′
,(11a)

y′′ − y + 2x′ =
η

ρωR2
rot

(
(x′x′′ + y′y′′) y′

(x′x′ + y′y′)2

)′
.(11b)

The initial conditions read

x = 1, y = 0, x′ =
v0

ωRrot

, y′ = 0,

and the boundary conditions at (unkown) time t = T

x(T )2 + y(T )2 =
Rcoag

Rrot

= 4, [x′(T ), y′(T )] · [x(T ), y(T )] = 0, · · · .

For the practical application we introduce the small parameters

ε =
η

ρωR2
rot

≈ 0.12, δ =
v0

ωRrot

≈ 0.026.

Then, the perturbed system reads in operator form

Lu = εf(u)(12)

together with boundary conditions (BC’s), and as a first step we might
approximate the solution u = [x, y] by the regular perturbation expan-
sion

u = u0 + εu1 + · · · ,

where u0 and u1 satisfy the boundary value problems

Lu0 = 0, (inhomogeneous BC’s) ,

Lu1 = f(u0), (homogeneous BC’s) .
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The solution for the first problem gives the bullet trajectory (cf. (7))

x0(t) = (1 + δt)cos(t) + tsin(t), y0(t) = −(1 + δt)sin(t) + tcos(t),

The second problem is solved using Maple for various combinations of
δ and ε. Fig. 4 shows the trajectories determined by u0 and u0 + εu1

for δ = 0.025 and ε = 0.0005. The value for ε is non physical, but the
plot clearly shows that even a small viscosity leads to an unacceptable
trajectory near the rotor, probably due to the condition y′ = 0 and to
the existence of a boundary layer near the rotor.
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Figure 4. Trajectories for δ = 0.025, ε = 0.0005

Acceptable trajectories are obtained for values of δ not close to zero,
even if the viscosity is large, as is shown in Fig. 5 (left), obtained for
δ = ε = 1. In case of physical values for δ and ε it turned out to
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Figure 5. Trajectories for δ = 1, ε = 1 and for δ =
0.025, ε = 0.12, y′ = −sin(π/18).

be impossible to obtain satisfactory results, using y′ = 0. However,
negative angles for the trajectory at the rotor, i.e. y′ < 0 had a stabi-
lizing effect. In Fig. 5 (right) the results are shown for δ = 0.025, ε =
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0.12, y′ = −sin(π/18). These results indicate again that the behavior
of the solution near the rotor should be reconsidered.
System (12) can be considered as a singularly perturbed problem with
a boundary layer most likely near the rotor. As a second step we could
apply singular perturbation techniques in this layer. We rescale the
dimensionless equations (11) near t = 0 by

x = 1 + εαx, y = εβy, t = εγt.

Interesting values for the parameters turn out to be α = γ = 1, β = 2.
Collecting the lowest order terms then gives

d2x

dt
2 =

d

dt

(
1

w2

d2x

dt
2

)
, w =

dx

dt
,

d2y

dt
2 + 2

dx

dt
=

d

dt

(
1

w3

d2x

dt
2

dy

dt

)
.

Solving these equations will give an approximation to the trajectory in
the boundary layer near the orifice. For other parts of the trajectory
a similar approach, using different scalings, could be applied, and then
the obtained solutions could be matched.

5. Time-dependent model

In the time-dependent description, the coordinates are r, the distance
to the axis of the rotor, and t, the time. We introduce θ as the angle
between the x-axis and the position vector x of the fluid,

x = r (cos(θ), sin(θ))T ,(13)

and we denote the velocity vector by v. Further we introduce the
rotation matrix J

J =

(
0 −1
1 0

)
,

so that the tangent vector and its length are given by

∂x

∂r
=

(
1

r
I +

∂θ

∂r
J

)
x,

∣∣∣∣
∂x

∂r

∣∣∣∣ =

√
1 + r2

(
∂θ

∂r

)2

,

The normalized tangent vector t and the unit normal vector n are

t =
1

|∂x/∂r|
∂x

∂r
,(14)

n = Jt.(15)



Proceedings of the 48th European Study Group Mathematics with Industry 45

5.1. Fixed coordinate system. First we derive the time deriva-
tive of the angle θ from the fact that the fluid moves with flow velocity
v. The equation

(
v − ∂x

∂t

)
·n = 0,

then leads to, using (13) and (15),

∂θ

∂t
=

v · n

x · t
.(16)

The other time derivatives, for A and for v, will be found from the
balances of mass (continuity equation) and momentum. However, we
will first derive a general conservation law in a segment between the
coordinates r = R1 and r = R2 for a local quantity d transported with
flux f (see Fig. 6)
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Figure 6. Transport passes through the ’skewed’ cross-
section A′.

∂

∂t

∫ R2

R1

Ad

∣∣∣∣
∂x

∂r

∣∣∣∣ dr +

[
x · f

x · t
A

]R2

R1

= 0.

Because this equation holds for every R1 and R2, we obtain the gen-
eral conservation law in differential form (if the solution is sufficiently
smooth):

∂

∂t

(
Ad

∣∣∣∣
∂x

∂r

∣∣∣∣
)

+
∂

∂r

(
x · f

x · t
A

)
= 0.(17)

The continuity equation is obtained by applying (17) to mass with
density d = ρ and flux f = ρv:

∂

∂t

(
ρA

∣∣∣∣
∂x

∂r

∣∣∣∣
)

+
∂

∂r

(
ρA

x · v

x · t

)
= 0(18)
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The momentum equations for the x and y components of the velocity
are found by applying (17) to momentum, e.g. for the x-component

d = ρu, f = ρuv − (1, 0)Tvisc,

where the viscosity tensor is given by

Tvisc =
η

|∂x/∂r|
(

t·∂v

∂r

)
ttT .

These equations read in vector form

∂

∂t

(
ρAv

∣∣∣∣
∂x

∂r

∣∣∣∣
)

+
∂

∂r

(
ρAv

x · v

x · t
− ηA

|∂x/∂r|
(

t · ∂v

∂r

)
t

)
= 0.(19)

An equation for the kinetic energy,

E =
1

2
ρA|v|2,

may be derived from

∂

∂t

(∣∣∣∣
∂x

∂r

∣∣∣∣E

)
= v· ∂

∂t

(
ρA

∣∣∣∣
∂x

∂r

∣∣∣∣ v

)
− 1

2
|v|2 ∂

∂t

(
ρA

∣∣∣∣
∂x

∂r

∣∣∣∣
)

.

Substituting the continuity equation (18) and momentum equations
(19), and combining advection and viscous terms yields

∂

∂t

(∣∣∣∣
∂x

∂r

∣∣∣∣E

)
+

∂

∂r

(
E

x · v

x · t
− 1

2

ηA

|∂x/∂r|t
T ∂vvT

∂r
t

)
= − ηA

|∂x/∂r|
(

t·∂v

∂r

)2

.

(20)

5.2. Rotating coordinate system. Stationary solutions can only
be found on a rotating coordinate system. The transformation is ob-
tained by choosing the variable θ̃ := θ − ωt, where ω is the angular
speed of the rotor. In the derivation of the transformed equations we
will frequently use the rotation matrix

C =

(
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

)

The transformed position vector x̃ is given by

x̃ = r
(
cos(θ̃), sin(θ̃)

)T

,(21)

which relates to the original coordinates by

x = Cx̃.

The partial derivatives of x satisfy

∂x

∂r
= C

∂x̃

∂r
,

∂x

∂t
= C

(
∂x̃

∂t
+ ωJx̃

)
.
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The velocity v and the unit tangent and normal vectors can be ex-
pressed in the transformed coordinates, too:

t = C t̃, n = Cñ, v = C (ṽ + ωJx̃) .

As a consequence, the dot products satisfy

x · v = x̃ · ṽ, x · t = x̃ · t̃, t · ∂v

∂r
= t̃ · ∂ṽ

∂r
.

The kinematic equation now reads in the new coordinate system, using
the fact that both J and C are orthogonal matrices,

∂θ̃

∂t
+ ω =

(Cṽ + ωCJx̃) · (Cñ)

x̃·t̃ =
ṽ·ñ
x̃·t̃ + ω.(22)

The transformed continuity equation becomes

∂

∂t

(
ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
)

+
∂

∂r

(
ρA

x̃·ṽ
x̃·t̃

)
= 0.(23)

The derivation of the transformed momentum equation is slightly more
complicated. First, we express each of the terms in (19) in the trans-
formed variables.

∂

∂t

(
ρAv

∣∣∣∣
∂x

∂r

∣∣∣∣
)

= C
∂

∂t

(
ρAṽ

∣∣∣∣
∂x̃

∂r

∣∣∣∣
)

+ ωCJx̃
∂

∂t

(
ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
)

+

+ ωCJρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
∂x̃

∂t
+ ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
∂C

∂t
(ṽ + ωJx̃) ,

∂

∂r

(
ρAv

x · v

x · t

)
= C

∂

∂r

(
ρAṽ

x̃·ṽ
x̃·t̃

)
+ ωCJx̃

∂

∂r

(
ρA

x̃·ṽ
x̃·t̃

)
+

+ ωCJρA
x̃·ṽ
x̃·t̃

∂x̃

∂r
,

and

− ∂

∂r

(
ηA

|∂x/∂r|
(

t·∂v

∂r

)
t

)
= −C

∂

∂r

(
ηA

|∂x̃/∂r|
(

t̃·∂ṽ

∂r

)
t̃

)
.

Combining these terms and using the transformed continuity equation
leads to

C
∂

∂t

(
ρAṽ

∣∣∣∣
∂x̃

∂r

∣∣∣∣
)

+ C
∂

∂r

(
ρAṽ

x̃·ṽ
x̃·t̃

)
− C

∂

∂r

(
ηA

|∂x/∂r|
(

t̃·∂ṽ

∂r

)
t̃

)
+

+ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
∂C

∂t
(ṽ + ωJx̃) + ωCJρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣
∂x̃

∂t
+ ωCJρA

x̃·ṽ
x̃·t̃

∂x̃

∂r
= 0.

Now, observe that

∂C

∂t
= ωCJ,

∂x̃

∂t
= Jx̃

∂θ̃

∂t
.
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Rearranging terms, and pre-multiplication by C−1 then yields

∂

∂t

(
ρAṽ

∣∣∣∣
∂x̃

∂r

∣∣∣∣
)

+
∂

∂r

(
ρAṽ

x̃·ṽ
x̃·t̃ −

ηA

|∂x/∂r|
(

t̃·∂ṽ

∂r

)
t̃

)

= −ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣ ω

(
J ṽ + ωJ2x̃ + J2x̃

ṽ·ñ
x̃·t̃ +

x̃·ṽ
x̃·t̃ J t̃

)

= −ρA

∣∣∣∣
∂x̃

∂r

∣∣∣∣ ω (2J ṽ − ωx̃) ,

where we used (22), and the equalities

J2 = −I, ñ = J t̃,
(
x̃·t̃) J ṽ = (x̃·ṽ) J t̃− (

ṽ·J t̃
)
x̃.

6. Conclusions

The viability might be questioned of the assumption that the solutions
behave smoothly near the rotor. The initial condition vy = 0 did lead
to severe problems and non physical trajectories, both in the numerical
experiments and in the regular perturbation. It has been suggested to
first consider the problem of a polymer dropping down from a horizontal
plate on a conveyer belt. Then, due to viscosity, the initial angle will
not be perpendicular to the plate. The correct behavior near the plate
might give a clue for the formulation of appropriate conditions in the
rotor spinning problem.
Once correct boundary behavior has been obtained, it might very well
be possible to solve the problem by clever shooting. However, care
should be taken in the initial part of the trajectory, which is very sen-
sitive to perturbations. Therefore we think that automatic shooting
will fail, but trial and error by hand might be successful. In future re-
search the models could be extended by including temperature effects
and forces due to air friction.

Acknowledgement. We would like to thank Marc Peletier for his
valuable contribution to our discussions.


