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Abstract. A practice in auditing of isolating and correcting er-
rors as part of a statistical audit is introduced with an example.
A brief literature review is presented. Decision procedures based
on (Poisson) upper confidence bounds are analyzed, using the all-
or-nothing model. Three situations are analyzed in detail, with
primary focus on the probability that an approved account (still)
contains a material error. This probability should not exceed the
specified level (0.05 in this paper). It is found that in all these
three cases it does, and, for some parameter values, substantially.

1. Introduction and problem statement

One of the problems presented to the 48th European Study Group
Mathematics with Industry was posed by employees of the Netherlands
Court of Audit (de Algemene Rekenkamer) and pertains to the auditing
practice of isolating and correcting errors while auditing accounts. A
long-standing dispute on the admissibility of some or all of these prac-
tices exists between the court and several departmental audit depart-
ments (departementale accountantsdiensten). The authors spent the
week working on this problem; their findings are reported here. The
limited time implies that not all angles could be covered, and many
issues that were raised await further study, in particular whether the
model adequately reflects common practice.
We start with an example. In a monetary unit sample, an auditor sam-
ples 100 Euros from an account of ¿ 1 million. The interval J is the
number of Euros in the account represented by one Euro in the sample,
in this case J = ¿ 1 million/100 = ¿ 10 000. The materiality—setting
an upper bound to the total error amount that is still acceptable—is set
at 4% or ¿ 40 000. As it happens, one error is found, in a ‘personnel’
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item. Common (statistical) procedure applied here is to compute an
upper confidence bound for the total error, based on the Poisson dis-
tribution. With one error this bound would be 4.75 times the interval
J , or ¿ 47 500. As this upper bound exceeds the materiality, approval
would have to be withheld.
It happens to be the case, however, that this error could only occur
in a ‘personnel’ item, and not in other items. Let us say, these are all
‘materials’ items. The auditor may decide to extrapolate (or project)
this error only to the corresponding segment of the account; we shall
employ the term stratum for such a segment. Furthermore, he may
attempt to correct the error.
So, in hindsight, the account and the sample are viewed as follows:

Stratum: Materials Personnel
Total amount: 800 000 200 000
Number sampled: 80 20

In the materials stratum no errors are encountered, the corresponding
Poisson upper bound therefore is 3J = ¿ 30 000. In the personnel
stratum one error of size ¿ 5000 is found among the sampled items
and it cannot be corrected. An exhaustive examination of the whole
stratum follows, but no other errors are found, whence the total error
in this stratum is known to be ¿ 5000.
The auditor may now combine the results in an overall upper bound
¿ 30, 000+¿ 5, 000 = ¿ 35, 000 that is below the materiality (¿ 40, 000).
Based on this, the account could be approved. In case the error in
the personnel item could be corrected, the adjusted bound would be
¿ 30, 000, with the same result.

The question we consider is: Is it permissible to modify regular statis-
tical procedures with isolation and correction steps? That is, do these
procedures retain their nominal properties such as confidence level and
significance level?

2. Isolating and correcting errors

For the sake of clarity we summarize what we mean by ‘isolating and
correcting errors’ in this paper. In reality the range of these practices
may be wider, which may cause our conclusions to be conservative. We
believe that the following is in agreement with International Standard
on Auditing 530 [5].
What does it mean to isolate an error? It should be noted that some
errors can only occur in certain strata: the error in the example above
could only occur in a personnel item. Isolating an error means the
identification of a stratum for which the error is typical and extrapolate
the error only to this stratum, rather than to the whole account.
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A crucial issue here is whether strata and their boundaries are identified
before or after the sample is drawn. In the case after, it may be possible
to find a suitable stratum for every error found, and with some creative
reasoning perhaps a suitably small stratum. After all, extrapolating an
error to a small stratum leads to a smaller overall error estimate than
when extrapolating it to the whole account.
At this point a modelling difficulty is encountered: how should one
model an auditor who isolates and corrects ‘in good faith’ (so not ‘too
creatively’)? We have tried to resolve this issue by exploring several
situations, including two extremes: in Section 6 the strata are identified
before the sampling and in Section 7 we assume that every error is
isolated to a very small stratum.
Isolating errors may be combined with correcting them. It is natural
to attempt to correct errors that are encountered and check for similar
errors in similar book items and correct them as well. In the exam-
ples, we shall assume that the isolating stratum, when it is identified,
is examined exhaustively and the errors found are corrected as much
as possible. As a result, the exact error in this part of the account
is known. While it is clear that these steps reduce the overall error
amount, it is less clear how previously computed confidence bounds
should be adjusted, or what these adjusted bounds mean.

3. A brief review of (some of) the literature

There are two papers—[2] and [6]—that discuss the theoretical aspects
of isolating and projecting errors, and that report on the behavior of
auditors when confronted with ‘unique’ errors, i.e., errors that are con-
sidered atypical for the population where the sample is taken from.
Although these two papers—and also the papers [3] and [4]—report
similar behavior of auditors (“a large majority of auditors favored iso-
lating errors that appeared to be unique” ([2], p. 246)), the theoretical
parts of these two papers express strongly opposing views.
The oldest of these two papers, Burgstahler and Jiambalvo [2], discusses
a simple balls-in-urn example to show that “to ‘isolate’ some sample
items found to be in error where ‘isolated’ items are not projected to
the population [. . . ] may lead auditors to systematically underestimate
population error and result in excessive probability of incorrect accep-
tance” ([2], p. 234). In their balls-in-urn example Burgstahler and
Jiambalvo only substantiate the first remark. In fact, their point of
view is in part philosophical. In their view, “a fundamental assump-
tion underlying audit sampling is that items are, for sampling purposes,
homogeneous in the sense that observation of some subset of items is
useful for drawing conclusions about the remainder of the whole pop-
ulation. [. . . ] Further, this assumption is necessary for both statistical
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and judgemental sampling in auditing.” To isolate errors, and not pro-
jecting them seems to be in contradiction with this basic assumption
of statistical auditing.
Their example is as follows. An urn contains black and red balls; the
red balls correspond to items containing an error. The auditor is to
construct the maximum likelihood estimate of the number of red balls
in the urn. The maximum likelihood estimate is used in [2] because it
is more intuitive than the more common confidence interval. Suppose
there are N balls in the urn, of which an unknown number R are red,
and the remaining N−R are black. The number of red balls in a sample
of size n drawn with replacement from this population of N balls has
a binomial distribution with parameters n and R/N . The maximum
likelihood estimate of R/N is r/n, where r is the number of red balls
in the sample. This estimator is unbiased, an observation not made in
[2]. Now suppose that the auditor draws r red balls, n − r − 1 black
balls, and one red cube (a ‘unique’ error). So one of the sample items
is qualitatively different from the others. According to Burgstahler and
Jiambalvo there are (at least) two approaches that might be adopted.
In the first approach one simply estimates the number of red items in
the urn. This approach treats the red cube the same as a red ball; it is
not isolated. The estimated number of red items in the population is
N(r + 1)/n.
In the second approach the red cube is assumed to be unique, and is
not taken as an indication that other red items (such as cones, discs,
etc.) might be in the urn. In this case it is assumed that of the items
in the urn, one is known to be a red cube, an unknown number R of
the balls are red, and the remaining N − R − 1 items are assumed to
be black balls. So the sample proportion of red balls is r/(n− 1), and
the estimate of the total number of red items is 1 + (N − 1)r/(n− 1).
Which is the correct approach? According to Burgstahler and Ji-
ambalvo the problem with the second approach is that “auditors are
seldom faced with situations where it is reasonable to rule out the pos-
sibility that a population contains other unique red shapes. [. . . ] In
auditing, no two errors are truly identical; each error is associated with
some unique characteristic.” ([2], p. 236).

According to Wheeler et al. ([6]), Burgstahler and Jiambalvo “sug-
gested that an estimator in which no sample errors are isolated from
the estimator (project all sample errors) is normative per standards of
statistical inference” . . . and “that an estimator biased by the isola-
tion of nonrecurring errors violates those standards.” ([6], p. 263). In
the view of Wheeler et al. “a focus on bias ignores the dispersion of
estimates.” It is shown in [6], in an balls-in-urn example that in sim-
plicity resembles that of Burgstahler and Jiambalvo, that in a situation
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where there are very few red objects other than red balls, the biased
estimator giving an estimate of the proportion of red balls in the pop-
ulation might be more desirable than the (unbiased) estimator giving
an estimate of the number of red items in the population. It is shown
that under certain circumstances the biased estimator has a smaller
mean squared error than the unbiased estimator (the mean squared
error equals the square of the bias plus the variance of the estimator).
“A biased estimator may be more precise than an unbiased one” and
evidence is provided that “the exclusion of unique errors in developing
a sample estimator can increase the accuracy of the estimation process”
([6], p. 273).
Apparently, Wheeler et al. think to have refuted Burgstahler and Ji-
ambalvo. We disagree. Furthermore, we believe that the examples pre-
sented in this paper substantiate Burgstahler and Jiambalvo’s claim
that isolating and correcting errors may lead to excessive probability
of incorrect acceptance.

4. Some terminology and model assumptions

We summarize some terminology and concepts that can be found in
standard textbooks on audit sampling techniques, for example, [1]. We
shall denote the total book value of the account by M , its unknown
error fraction by p, and refer to Mp as the overall error (before correc-
tion). In formulas the materiality is denoted by mat ; in the examples
we used mat = 0.04M , that is, 4%. Samples are of size n, and items are
sampled proportional to size in Euros (a so-called monetary unit sam-
ple, a standard auditing practice). For the analysis the all-or-nothing
principle is used: this is simplest to model, yet considered sufficient for
the investigation at hand (see also Section 9). As a consequence the
situation can be considered as if a sample of n Euros is drawn from a
population of M Euros that contain a fraction p of ‘bad’ Euros. Let
J = M/n; this is the interval : the amount represented by one sampled
Euro.
Confidence bounds used are 95% upper confidence bounds based on the
Poisson approximation to the binomial distribution:

Number of errors in the sample: 0 1 2
Confidence bound on total error: 3J 4.75J 6.3J

Taking mat = 0.04M and the confidence level of 95% are fairly arbi-
trary choices that are immaterial for the patterns that emerge from the
results.

5. Our approach

We consider the auditing process as a testing procedure with null hy-
pothesis “overall error does exceed the materiality.” This test may
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be performed at significance level 5% by computing a 95% upper confi-
dence bound for the overall error and comparing it with the materiality,
rejecting the null hypothesis if the bound falls below. In this way a type
I error—approving an account with a material error in it—occurs when
a sample from such an account yields a confidence bound below the
materiality.
An auditor may (and in practice often does) choose the sample size n
by solving 3J = mat , leading to n = 3M/mat . If the sample turns out
to be free of errors, the upper bound equals the materiality and the
account may be approved. If the auditor wants to be able to tolerate
one error, then n = 4.75M/mat is chosen.
When isolation and correction is added to this procedure, an account
with a material error in it gets a second chance to slip through. Its first
chance: produce no errors in the sample; this happens with probability
at most 5 percent (we note that for an account whose error just exceeds
the materiality and a minimal sample size as described above, this
probability equals 5 percent). The second chance: produce a pattern of
errors whose isolation and correction produces an upper bound below
the materiality but is insufficient to bring the overall error below the
materiality.
While this reasoning shows that isolation and correction are wrong in
the sense that the nominal type I error probability is exceeded, the
practical question is by how much this probability is exceeded and
whether it can get ‘really bad.’
We took as our assignment to find examples where the actual type
I error probability substantially exceeds its nominal value. We have
constructed situations where we can

(1) model what an accountant might do, and
(2) show P((corrected) account is approved with material error in it) ≥

0.05.

A modelling difficulty arose in connection with the ‘strata’: the seg-
mentation of the account into strata depends on what kind of errors
are discovered in the sample. We found it very difficult to describe this
in a suitably general model that would permit a probabilistic analysis.
We choose to pretend that there exists some stratification of the ac-
count (that is, before the sampling is done) and that examination of
sampled ‘bad’ items uncovers (some of) these strata (in Section 6 the
strata are known beforehand).
If the account is divided into k strata, we denote their respective book
amounts, error fractions and sample sizes by Mi, pi and ni, i = 1, . . . , k.
They satisfy the relations M1+ · · ·+Mk = M , M1p1+ · · ·+Mkpk = Mp
and n1 + · · · + nk = n. In examples most of these parameters will
vary, but the sample will always be homogeneously divided among the
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strata, i.e., the sampling intervals are all equal: Mi/ni = Ji = J , for
all i = 1, . . . , k.
In the next three sections examples are presented of accounts combined
with auditing steps that involve isolation and correction. The main
difference is in the liberties available and/or taken in this process. In
each case we compute the probability of approving an account whose
total error (when applicable: after correction) exceeds the materiality.

6. Pre-stratification, errors cannot be corrected

Consider an account with two strata that are delineated before the
sampling takes place—one may think of ‘personnel’ and ‘materials’.
The book sizes are M1 and M2, the error fractions p1 and p2. So
M = M1 + M2 and the overall error is Mp = M1p1 + M2p2. Errors can
only be identified, but not corrected.
The following auditing procedure is followed. A sample of n = n1 + n2

items is taken, with n ≥ 3M/mat . If no errors are found, the account
is approved. If one or more errors are found, the strata are considered
separately. For an error-free stratum the Poisson upper bound is com-
puted: 3Mi/ni. A stratum with errors is examined exhaustively and
the value of the true error Mipi is determined. The (bounds on the)
errors are combined by adding them. If this combined bound is below
the materiality, then the account is approved.
Our main interest is in the probability of approval when the true error
exceeds the materiality, hence we assume M1p1 + M2p2 ≥ mat . Let
zi = (1 − pi)

ni , the probability that no errors are found in stratum i.
We find:

P(approval) = z1z2 + z1(1− z2)1[3M1/n1+M2p2≤mat ]

+ z2(1− z1)1[3M2/n2+M1p1≤mat ],

where 1[A] = 1 when condition A is fulfilled and 1[A] = 0 otherwise.
Intuition suggests that this approval probability should be a decreasing
function of both p1 and p2. We rewrite the previous expression as the
sum of two terms:

P(approval) = z1(1− z2)1[3M1/n1+M2p2<mat ]

+ z2

(
1[3M2/n2+M1p1<mat ] + z11[3M2/n2+M1p1≥mat ]

)
.

The first term is decreasing in p1, since z1 is a decreasing function of
p1. The sum enclosed by square brackets may equal 1 for small values
of p1, and for larger values it equals z1, hence is a decreasing function
of p1 as well. Thus, we have shown that P(approval) is a decreasing
function of p1 and, by symmetry, also of p2. Hence, the largest possible
approval probabilities occur when the true error M1p1 + M2p2 equals
the materiality.
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When n = 3M/mat the assumption Mi

ni
= M

n
implies that M1p1 +

M2p2 = mat is equivalent with n1p1 +n2p2 = 3. Along this border seg-
ment of cases P(approval) = z1z2. (Strictly speaking, if p1 or p2 is zero
we get an extra term; for example, if p2 = 0 the result is P(approval) =
z1; but this corresponds with the limit of P(approval) = z1z2 for p2 go-
ing to zero, hence z2 to 1). This shows that to find the highest approval
probability, we should maximize

z1z2 = (1− p1)
n1(1− p2)

n2

under the conditions

n1p1 + n2p2 = 3, p1 ≥ 0, p2 ≥ 0.

The maximum cannot exceed 0.05 since

(1− p1)
n1(1− p2)

n2 ≤ (1− p)n ≤ e−np = e−3 ≤ 0.05,

where the first inequality follows by taking logarithms and then apply-
ing Jensen’s inequality (note that np = n1p1 +n2p2, since p = mat/M),
and the second from 1 − x ≤ e−x. The bound 0.05 is attained for
p1 = p2 = p; when p1 and p2 are very different the probability is much
smaller than 0.05.
When 3M/mat < n ≤ 6M/mat , a similar analysis shows that the
approval probability stays below 0.05. For n > 6M/mat it can be
exceeded.

In the case of k ≥ 2 strata, assuming that Mp ≥ mat , we see that
approval occurs when

3J +
∑

i:error found in stratum i

Mipi < mat ,

where the first term is the error bound for the aggregation of strata
where no errors were found, and the second the actual total error for the
others. We now restrict ourselves to the special case of ‘homogeneous’
strata which, admittedly, appears to be the worst case: pi = p, Mi =
M/k, i = 1, . . . , k. Substituting this we find that approval occurs when
the number of strata with errors does not exceed:

mat − 3J

Mp/k
.

Hence, if mat = 3J , approval only occurs when no errors are found,
and the type I error probability is at most 0.05. This is still the case
when the gap mat − 3J is positive but below Mp/k, which is the total
error per stratum.
However, if the sample size is chosen larger than the minimum 3M/mat ,
approval occurs when errors are found in one or more strata. Table 1
lists the probability as a function of the number of strata k. The pa-
rameters are p = 0.05 and n is chosen to satisfy mat = 4.75M/n as



Proceedings of the 48th European Study Group Mathematics with Industry 17

closely as possible, taking into account that the number sampled per
stratum, ns = n/k, should be an integer. Figure 1 shows a plot of
these results. Note that in all cases a material error remains, since
errors found cannot be corrected. It is seen that the probability of in-
correct approval quickly and considerably exceeds acceptable levels as
the number of strata increases.

Table 1. Probability of incorrect approval for 2, . . . , 19
strata; p = 0.05.

k ns n P(approval) k ns n P(approval)
2 60 120 0.002 11 11 121 0.228
3 40 120 0.002 12 10 120 0.223
4 30 120 0.033 13 10 130 0.166
5 24 120 0.028 14 9 126 0.363
6 20 120 0.025 15 8 120 0.394
7 17 119 0.115 16 8 128 0.329
8 15 120 0.102 17 7 119 0.591
9 14 126 0.078 18 7 126 0.528

10 12 120 0.089 19 7 133 0.468
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Figure 1. Probability of incorrect approval as a func-
tion of the number of strata k; p = 0.05; horizontal line
marks 0.05.

7. Pre-stratification, no correction, dependence on p

In the previous section the situation was analyzed where the number
of strata in the pre-stratification varied. In this section we consider the
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dependence on the error fraction p. Suppose an auditor judges every
error found to be so unique that no others of its kind can be imagined.
In effect, this implies that every item is in a stratum on its own and,
consequently, there is a large number of strata. Suppose r errors are
found in the sample, and error i corresponds to an item of size si which
after exhaustive examination reveals bi ‘bad’ Euros.
Then, considering the part of the sample not contained in the above
examined strata as an errorfree sample of n − r from the rest of the
account the following (95%) upper confidence bound may be proposed:

3
M −∑

si

n− r
+

∑
bi

For example, let us consider an account with M = ¿ 1 000 000 and
k = 1000 strata, each of size ¿ 1000. We use n = 4M/mat = 100
and each stratum has the same error fraction p. Then the number of
fully examined strata S is approximately binomially distributed with
parameters n and p; some strata may be sampled more than once, so
the number of fully examined strata is stochastically smaller than this
binomial approximation. The actual acceptance probability therefore
is bounded below by

P

(
3
M − SM/k

n− S
+ Sp

M

k
< mat

)
.

Figure 2 shows a plot of this probability, which is close to 1 for p ≤ 0.11
and drops below 0.05 only when p > 0.244. We see that this case,
which could be labeled ‘extreme isolation,’ produces extremely high
probabilities of incorrect approval.

8. Homogenous strata, every error can be corrected

Until now we have considered examples without possibility of correction
of errors. In this section we consider the situation where every error
can be corrected. Suppose an account consists of k homogenous strata
of equal size: pi = p, Mi = M/k, i = 1, . . . , k. We choose p = k

k−1
· mat

M
,

so that correcting one whole stratum still leaves enough errors in the
k − 1 remaining to attain materiality. This implies the following:

• if zero errors are found in the sample, the account is approved;
• if all errors lie in one stratum, that stratum will be corrected

and the resulting account is approved;
• if more than one stratum is corrected the remaining error drops

below the materiality.

Let S be the number of strata in which errors are detected. Then S has
a binomial distribution with parameters k and π = 1− (1− p)ns , where
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Figure 2. Approval probability as a function of the er-
ror fraction p; horizontal line marks 0.05.

ns is the number of items sampled per stratum, equal to n/k rounded
upward. It follows that

P(incorrect approval) = P(S ≤ 1) .

We have chosen n ≈ 100, that is, n ≈ 4M/mat , assuming a sample
size slightly above the minimum. In Table 2 and Figure 3 the results
are presented. While the results may look less than dramatic, we re-
mark that for the minimum sample size n = 75 approval probabilities
are larger: for k = 3, . . . , 19, it varies from 0.11 to 0.18. Also, it is
suspected that similar examples could be constructed with even larger
approval probabilities.

Table 2. Probability of incorrect approval for 2, . . . , 19
strata; p = 0.04 · k/(k − 1).

k ns n p P(approval) k ns n p P(approval)
2 50 100 0.080 0.031 11 10 110 0.044 0.051
3 34 102 0.060 0.041 12 9 108 0.044 0.056
4 25 100 0.053 0.053 13 8 104 0.043 0.065
5 20 100 0.050 0.059 14 8 112 0.043 0.050
6 17 102 0.048 0.059 15 7 105 0.043 0.064
7 15 105 0.047 0.055 16 7 112 0.043 0.051
8 13 104 0.046 0.059 17 6 102 0.042 0.072
9 12 108 0.045 0.053 18 6 108 0.042 0.059

10 10 100 0.044 0.072 19 6 114 0.042 0.048
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Figure 3. Probability of incorrect approval as a func-
tion of the number of strata k; p = 0.04 · k/(k − 1);
horizontal line marks 0.05.

9. Conclusions and final remarks

We briefly discussed two papers dealing with isolating and correcting
errors. Burgstahler and Jiambalvo [2] predict that isolation and correc-
tion may lead to very high probabilities of incorrect approval, whereas
Wheeler et al. ([6]) hold an opposite point of view.
It seems to be difficult to model the isolation and correction procedure
used in the auditing process. In order to formulate and analyse a model
for this procedure, we have considered three examples with prestratifi-
cation. For these examples we analysed the effect on the probability of
incorrect approval of the number of strata, the error fraction and the
possible corrections.
These examples seem to show that in many cases the probability of
incorrect approval is (much) larger than the allowed margin, supporting
the view of Burgstahler and Jiambalvo.
Using so-called Stringer bounds will not amend this situation: we be-
lieve that similar examples with similar excessively high approval prob-
abilities can be constructed. We conclude that reconsideration of the
standards pertaining to isolation and correction, as formulated in the
International Standard on Auditing 530, seems to be in order.
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