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CHAPTER 3

Non-Newtonian Effects on Ink-Jet Droplet
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Abstract. In this report we present a simple mathematical model for
the formation and possible breakup of ink-jet droplets. The formation of
the droplet is based on an energy argument. The evolution of the droplet
tail is modelled by a one-dimensional axis-symmetric non-Newtonian liq-
uid filament. A simple power-law formula is used for the elongational
viscosity. Numerical simulations are presented and effect of the elonga-
tional viscosity on the tail evolution and breakup is investigated.
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1. Introduction

Light-emitting polymer display (LED) is a new technology. LED devices do not
have viewing angle restriction, which gives them a major advantage over the existing
liquid crystal displays (LCDs). The active material in the display is a very thin
semi-conducting polymer layer of order 100 nanometer. To obtain these thin layers
a small concentration of the polymer is dissolved in a suitable solvent. Different
colors can be obtained with different polymers. To make a full color display, red,
green and blue polymer solutions have to be applied in pixels of typically 66× 200
micron. The method with which the polymer solutions are applied is by means of
ink-jet printing. Individual droplets are printed in the pixels and by evaporating
the solvent the final polymer layer is obtained. The polymers have high molecular
weights which cause the droplet formation to be quite different from an ordinary
Newtonian liquid, i.e. a long filament may form. This can give rise to a decrease in
the placement accuracy of the droplets on the substrate. Therefore, in predicting
predicting the behaviour of a droplet in an ink-jet printer the material parameters
of the liquid are very important.

The viscosity of an ink is an important parameter for the droplet formation
in an ink-jet head. Standard in the ink-jet printing world is to measure the shear
viscosity of the liquid. Most common inks are Newtonian liquids and the shear
viscosity is a suitable characterization parameter. For inks that are solutions of a



46 Huaxiong Huang

high molecular weight polymer in small concentrations in a solvent, the situation is
quite different. It has been observed in the laboratory that the droplet formation
of these solutions is considerably different from the predictions based on the shear
viscosity alone, i.e., assuming that the solution is a pure Newtonian liquid. For
example, more energy is needed to eject the droplet and some droplets are formed
with a filament, which can break up in satellite droplets. When these solutions are
measured in a shear rheometer, the viscosity is shown to be a constant and is in
the proper regime for ink-jet printing. This suggests that the filament formation
during the ink-jet printing is caused by the different behaviour in the elongational
viscosity. This is not surprising since it is well known (see for example [10] and
references therein) that a small concentration of a high molecular weight polymer
in a solvent can increase the elongational viscosity substantially.

Since the shear viscosity cannot be used to characterize the inks, we need to
obtain the elongational viscosity in order to make reasonable predictions. The prob-
lem is that the elongational viscosity is not easy to measure, especially in the range
of deformation rate of ink-jet printing, in contrast to the shear viscosity. On the
other hand, the experimental results indicate that the tail behaviour is strongly af-
fected by the properties of the polymer. This suggests that if a mathematical model
of the non-Newtonian fluid can be constructed, then the model can be calibrated
using the tail-length or other information of the droplets by varying the operational
conditions. This approach can be viewed as an indirect mean to obtain information
on the elongational viscosity. Obviously, the same model can also be used to study
the dynamic process of droplet formation. In this report, we describe some prelim-
inary results based on a one-dimensional model for the elongational viscosity and
for the dynamics of droplet formation.

The rest of the report is organized as follows. In section 2, we describe a
mathematical model for the dynamics of droplet formation. The model is one-
dimensional is space but highly non-linear, therefore, numerical means are used to
obtain the solution, which are given in section 3. In section 4, we present main
numerical results which show that the length of the droplet tail is affected by a
parameter in our elongational viscosity model. Finally, in section 5 we discuss the
limitation of our model and possible ways of improving it.

2. Mathematical Model

The problem of droplet formation consists of two stages: the ejection of liquid
from the nozzle and the breakup liquid filament. For an ink-jet printer, this is
achieved using a large number of miniature valveless pumps. The pumps are actu-
ated electronically, by heating elements of the liquid locally to high temperatures.
Vapor bubbles are created and grow explosively at desirable locations inside pumps.
As a result, they push a small amount of liquid at high velocity through nozzles.
The completely understand the formation of an ink-jet droplet, detailed two (pos-
sibly three) dimensional hydrodynamics models are needed. However, the exit flow
of general non-Newtonian fluid is still far from being understood and simple models
are used instead. For example, the precess has been investigated using an energy
argument while the behaviour of the pumps is modeled as a Helmholtz resonator
in [4]. Since our main purpose is to study the non-Newtonian effects on the filament
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(tail) of the droplet, we will not investigate the exit flow in detail. Instead, we will
follow the energy argument in [4] for the formation of droplets.

The breakup of a liquid jet in the context of Newtonian fluid has been well-
studied by several researchers based on (one-dimensional) thin jet approximation.
Such models predict the breakup of jets in finite time, described by a similarity
solution [6, 7]. It is well-known that visco-elasticity and other non-Newtonian
effects delay the breakup by suppress the surface tension [3, 8, 9, 11]. Nevertheless,
pinch-off may still occur due to the surface tension force, which becomes dominant
when the radius of the liquid jet is small. The problem being investigated here,
however, has some distinct features. The ink-jet is driven by thermal expansion of
the liquid (or a piezo-electric mechanism) with a period on the order of 20 micro-
seconds [4]. Therefore, the breakup of the ink-jet may be caused by the highly
oscillatory nature of the flow (at least initially). Our main objective is to set up a
mathematical model and investigate numerically the combined effect of the highly
frequency transient flow and the non-Newtonian nature of the polymer solution.

2.1. Initial droplet formation. In order to provide the initial condition for
the evolution of the droplet tail, we use a simple energy argument to obtain the time
t0 when the droplet forms. The basic argument is based on energy consideration,
following that of [4]. We assume that before the droplet forms, the fluid simply
flows out of the nozzle as a liquid cylinder with radius Rn. At t0, the droplet forms
and it moves with the fluid velocity at the nozzle, V (t0). Thus, we can estimate the
total kinetic energy flowing out of the nozzle during the period 0 ≤ t ≤ t0 as

Tk.e. =

∫ t0

0

1

2
ρAV 3dt

where A is the nozzle cross section area, ρ is the fluid density and V is the fluid
velocity at the nozzle exit, assumed to be given. The total kinetic energy associated
with the liquid cylinder at t0 is

Tk.e.l. =

∫ t0

0

1

2
ρAV dtV 2(t0).

The total surface energy associated with the liquid cylinder at t0 is

Ts.e.l. = σ2πRn

∫ t0

0

V dt

where σ is the surface tension coefficient between the liquid and the air. We assume
that the energy dissipation due to viscosity is negligible, then the drop forms at
t0 when Tk.e.l. + Ts.e.l. is about to exceed Tk.e., i.e., the total kinetic energy is not
sufficient to maintain the growth of the liquid cylinder out of the nozzle beyond t0.

In addition, we assume that after the droplet forms, it immediately takes a
spherical shape and is connected with the nozzle by a tail, in the shape of a cylinder.
The evolution and the eventual breakup of the tail is the subject of the rest of this
report.
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2.2. Tail evolution. The governing equations for the fluid inside the tail of
the droplet are the conservation of momentum and incompressibility equations

ρ

[

∂~v

∂t
+ (~v · ∇)~v

]

= ∇ · T −∇p

∇ · ~v = 0,

where ρ is the density, ~v is the velocity, T is the viscous stress tensor and p is the
pressure. Here we have neglected the effect of the gravity.

To simplify the discussion, we make the following assumptions:

(i) The flow is essentially one-dimensional since the tail radius is small compared
to its length L. Furthermore, in general the variation of the tail radius is also
small, except during the initial stage of droplet formation and when tail breaks
up (pinch-off occurs).

(ii) The formation of the initial droplet and subsequently its tail are determined by
the flow at the exit of the nozzle. We assume that the flow-rate is a periodic
function of time given by Q = AnV , V = Vne−βt sin(ωt), where An is the
nozzle cross section area, V is the velocity at the nozzle exit, Vn is the (un-
damped) mean velocity at the nozzle, β is the damping rate due to energy
dissipation of the fluid before it reaches the exit and ω is the frequency of the
oscillation.

(iii) We assume that the droplet forms at t0 with an initial tail length L0. The
droplet is assumed to be a sphere with a fixed radius Rd.

(iv) The tail is of cylindrical shape with radius R which is both a function of time
t and spatial coordinate x, measured from the nozzle. Upon exit from the
nozzle, the radius Rc of the fluid volume contracts and its value is assumed to
be known and equals to the tail radius.

(v) Since ω is large, and the break-up of the tail normally occurs within a short
time period after the droplet forms, temperature effects on both the surface
tension coefficient σ and fluid (elongational) viscosity µ̂ are negligible.

(vi) Finally, we assume that the fluid is incompressible with a constant density.

The governing equations for the evolution of the tail and the motion of the droplet
can now be re-written as1

∂A

∂t
+

∂Au

∂x
= 0,

ρ

(

∂Au

∂t
+

∂Au2

∂x

)

=
∂

∂x

(

Aτ + A
σ

R

)

,

for 0 ≤ x ≤ L(t), where A = 2πR2 is the cross section area of the tail and τ is the
axial viscous stress. For Newtonian fluid, we have

τ = 3µ
∂u

∂x

1The set of equations are based on the assumption that the problem is one-
dimensional. It can also be derived formally using asymptotic argument, similar to the
procedure outlined in [5].
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where the constant µ is the shear viscosity. For a non-Newtonian fluid, the viscous
stress is no longer linearly proportional to the strain rate. In this study, we use a
simple model in the form

τ = µ̂
∂u

∂x
+ kw,

∂w

∂t
=

∂u

∂x
.

Here µ̂ is the elongational viscosity, w are the velocity and relative displacement of
the fluid in the axial direction and k is assumed to be a constant. The governing
equations now become

∂A

∂t
+

∂Au

∂x
= 0,

ρ

(

∂Au

∂t
+

∂Au2

∂x

)

=
∂

∂x

(

Aµ̂
∂u

∂x
+ Ak

∫ t

tref

∂u

∂x
dt + A

σ

R

)

,

where tref is some reference time.
The boundary conditions for the above equations are normally required at x = 0

(exit) and x = L (when the tail joins the droplet). They are

x = 0 : R(0, t) = Rc; u(0, t) =
Q

2πR2
c

,

x = L(t) : u(L(t), t) =
dL

dt
, Aµ̂

∂u

∂x
+ Ak

∫ t

tref

∂u

∂x
dt + A

σ

R
= F.

The motion of the droplet is given by the Newton second law of motion

F = −ma, a =
d2L

dt2
.

We note that the boundary condition on R is not required at x = L since the velocity
there is positive and the characteristic goes out of the domain. However, the flow
(velocity) at x = 0 may reverse its direction and in that case the radius should
not be given at x = 0. When the velocity is negative, it is likely that the contact
line may move inside the nozzle and the flow pattern becomes quite complicated.
Therefore, the artificial boundary condition for R at x = 0 for negative velocity is
unphysical. A possible remedy will be to allow the exit boundary to move with the
fluid when the velocity is negative, without considering a two-dimensional model.
However, this issue is not considered in the present study.

3. Numerical Method

We now describe the numerical method used for solving the model equations
derived earlier.

3.1. Coordinate transformation. We first define a one-dimensional map

ξ =
x

L(t)
, t = t.
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Under this transformation, we have

∂

∂x
=

1

L

∂

∂ξ
,

∂

∂t
=

∂

∂t
− ξL̇

L

∂

∂ξ
.

The governing equations become

∂R

∂t
=

ξL̇ − u

L

∂R

∂ξ
− R

2L

∂u

∂ξ
,

∂u

∂t
=

ξL̇

L

∂u

∂ξ
+

1

ρR2L

∂

∂ξ

(

µ̂R2

L

∂u

∂ξ
+ kR2w + σR

)

,

∂w

∂t
=

1

L

∂u

∂ξ

where L̇ = dL
dt . The boundary and initial conditions are

ξ = 0 : u(0, t) = V, R(0, t) = Rc,

ξ = 1 : u = L̇,
µ̂

L

∂u

∂ξ
+ kw +

σ

R
= − M

πR2
a

where a = d2L
dt2 and M =

4πR3

sρ
3 are the acceleration and the mass of the droplet,

respectively.

3.2. Finite difference discretization. We set up a uniform grid ξj = jh
for j = 0, 1, ..., N with h = 1/N and define Uj(t) and Wj(t) as approximations of
u(ξj , t) and w(xj , t). Applying the finite difference approximation in ξ and using
short-hand notation ˙ for time differentiation yields

Ṙj = [1 + sign(ξjL̇ − Uj)]
ξjL̇ − Uj

2L

Rj+1 − Rj

h

+[1− sign(ξjL̇ − Uj)]
ξj L̇ − Uj

2L

Rj − Rj−1

h

−Rj

2L

Uj − Uj−1

h
,

U̇j = [1 + sign(L̇)]
ξj L̇

2L

Uj+1 − Uj

h
+ [1 − sign(L̇)]

ξj L̇

2L

Uj − Uj−1

h

+
1

ρR2
jLh

(

µ̂j+1/2R
2
j+1/2

L

Uj+1 − Uj

h
+ kR2

j+1/2Wj+1/2 + σRj+1/2

−
µ̂j−1/2R

2
j−1/2

L

Uj − Uj−1

h
− kR2

j−1/2Wj−1/2 − σRj−1/2

)

,

Ẇj+1/2 =
1

L

Uj+1 − Uj

h
,

Ẇj−1/2 =
1

L

Uj − Uj−1

h
.
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where

µ̂j+1/2 = µ̂

(

Uj+1 − Uj

Lh

)

, µ̂j−1/2 = µ̂

(

Uj − Uj−1

Lh

)

, Rj±1/2 =
1

2
(Rj + Rj±1)

for j = 1, ..., N − 1. Note that the upwind scheme is used for the convective terms
in both continuity and momentum equations.
At the boundary, we have

U̇0 = Vne−βt[ω cos(ωt) − β sin(ωt)]

and

U̇N = a ≡ −πR2
N

M

(

µ̂N

L

UN − UN−1

h
+

σ

RN

)

, L̇ = UN .

3.3. Time integration and initial conditions. The semi-discretization us-
ing finite difference approximation results in a system of (non-linear) ordinary dif-
ferential equations which is solved using a standard built-in Matlab time integrator
ode23s, starting from t = t0. The initial value of the tail length L0 is assumed to be
an arbitrary small value. The velocity for the tail and the droplet u(x, t0) = V (t0)
and the radius of the droplet Rs can be calculated once we know t0, the time when
the droplet forms.

The value of t0 is the non-trivial solution of the following equation

Tk.e. = Tk.e.l + Ts.e.l

which can be solved using Maple.

4. Results

The parameter values for the numerical simulations are: Vn = 5 m · s−1, ω =
4π × 104 s−1, Rn = 2.5 × 10−5 m, ρ = 103 kg · m−3, and σ = 3 × 10−2 N · m−1.
We have used a power-law model for the elongational viscosity µ̂ based on the
experimental data in [1]

µ̂ =

{

3 × 10−3, |ε̇| ≤ 103 s−1

3 × 10−3
(

|ε̇|
103

)γ

, otherwise

in Pascal. Here ε̇ = ux is the axial strain-rate, γ is a free parameter and for a
Newtonian fluid, γ = 0. Other free parameters are the elastic constant k, initial
tail length L0 and tail radius near the nozzle exit Rc.

4.1. Initial and boundary conditions. The initial conditions are computed
based on t0, the time when the droplet forms, which is estimated based on energy
arguments. With the velocity profile at the nozzle exit V without any damping
(β = 0), equation (3.3) becomes

2 cos2 ωt0 − cosωt0 −
6σC

ρAV 2
n

= 1
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where C = 2πRn is the circumference of the liquid cylinder. Based on the parameter
values given here, the non-trivial solution can be obtained using Maple as ωt0 =
2.308. The total volume of the droplet and the tail can be computed as

V ol =

∫ t0

0

AnV dt =
AnVn

ω
(1 − cosωt0) = 1.306× 10−13

in m3. In our computation, we assume that a certain portion of it forms the spherical
droplet and the rest becomes the tail. Thus we should have the following constraint
on the droplet radius

Rs ≤
(

3V ol

4π

)
1

3

= 3.148× 10−5

in m. The initial velocity of the droplet and the tail is assumed to be equal to that
near the nozzle exit with radius Rc, which is

Uj(0) = Vc(0) ≡ R2
n

R2
c

Vn sin(ωt0) = 3.702
R2

n

R2
c

in m · s−1. Therefore, it depends on the radius of the initial tail radius Rc ≤ Rn,
which is chosen as a free parameter here. The initial length of the tail L0, in principle
can be estimated based on the choice of Rs and Rc. However, for convenience, its
value is chosen as a small but non-zero value of 10−5 m for computational purposes.
Finally, the boundary condition for the velocity is given by

U0(t) = Vc(t) ≡
R2

n

R2
c

V =
R2

s

R2
c

Vn sin(ωt).

4.2. Power-law non-Newtonian fluid. We now present some of the com-
putational results based on the model and the parameter values listed earlier with
no elastic effect, i.e., k = 0. In Figure 1, the evolution of the droplet tail is shown
for Rs = 1.25Rn, Rc = Rn, and Vc = V . We have also included damping in V

with the damping rate β = log(2)
2 ω. The non-Newtonian power-law parameter is

chosen as γ = 1.1. Figure 2 shows the tail evolution for the case when the radius
of the tail near nozzle exit is reduced to half of the nozzle radius, i.e. Rc = 0.5Rn.
This causes the tail to break up sooner, compared to the previous case with a large
Rc. Next we have investigated the effect of parameter γ. In Figure 3, we have the
same parameter values compared to Case 1, except that γ = 1.5. It can be seen
that larger value of γ delays the breakup of the tail. Note that this is the case
corresponds to a higher molecular weight polymer solution.

4.3. Viscoelastic fluid. The viscoelastic effect of the fluid on the tail is in-
vestigated numerically by giving non-zero values to the spring constant k and the
results are presented in Figures 4-5. It can be seen from the figures that the elastic-
ity has visible effects. For the small spring constant case (k = 10−5), the ‘satellite’
droplets appear but it is not clear whether this is physical or due to numerical in-
stability. For the large k case, the elasticity is dominant and the droplet is pulled
back towards the nozzle exit and the tail acts as a spring.
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Figure 1. Case 1. Power-law elongational viscosity with
γ = 1.1. Shape of the tail for Rs = 1.25Rn and Rc = Rn at
(a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e) t = 3t0;
(f) t = 5t0.
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Figure 2. Case 2. Power-law elongational viscosity with
γ = 1.1. Shape of the tail for Rs = 1.25Rn and Rc = 0.5Rn

at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e) t = 3t0;
(f) t = 5t0.
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Figure 3. Case 3. Power-law elongational viscosity with
γ = 1.5. Shape of the tail for Rs = 1.25Rn and Rc = Rn at
(a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0; (e) t = 3t0;
(f) t = 5t0.
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Figure 4. Case 4. Viscoelastic fluid with k = 10−5. Shape
of the tail at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0;
(e) t = 3t0; (f) t = 5t0.

5. Conclusion

In this report we have presented a one-dimensional model to predict the breakup
of the liquid filament (tail) attached to an ink-jet droplet. The effect of a power-law
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Figure 5. Case 5. Viscoelastic fluid with k = 10−4. Shape
of the tail at (a) t = 0; (b) t = 0.5t0; (c) t = t0; (d) t = 2t0;
(e) t = 3t0; (f) t = 5t0.

non-Newtonian stress-strain relationship on the evolution of the tail is investigated
by solving the model equations numerically. The results clearly show that the delay
(and sometimes lack) of breakup of the droplet tail for higher power relationships.
This is consistent with the experimental evidence for higher molecular polymer
solutions. The elasticity effect on the behaviour of the tail was also investigated.
However, it is not clear whether the appearance of ‘beads’ on the tail, resembling
those satellite droplets observed experimentally, are physical or due to numerical
instability.

The numerical results also suggest that the mechanism for the breakup of the
tail is most likely not surface tension driven since the viscous stress is much larger
than the surface tension based on the calculation. The oscillatory nature of the
pump drives the flow at the nozzle exit and reverses the flow direction periodically.
As a result, the flow inside the liquid filament (tail) near the exit may be ‘sucked’
back while the rest of the tail still moves forward with the main droplet. This causes
a decrease of fluid mass locally near where the flow velocity changes direction and
forms a ‘neck’. Surface tension may become a contributing factor after the formation
of the neck and speed up the breakup process. It is possible that a theoretical model
can be developed to predict the final breakup using a similarity solution. However,
this was not pursued in the current study.

In summary, these simulation results seem to suggest that the one-dimensional
model capture the essential features of the breakup of ink-jet droplet tails. A pos-
itive connection between the length of the tail and molecular weight is established
from the fact that delay in breakups usually result in a longer tail. And the de-
lay can be contributed to the higher power in the power-law elongational viscosity,
which is one of the consequences of higher molecular weight in the polymer solution.
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However, it must be noted that the current model has its limitations. First of all, we
have ignored the dynamical evolution of the droplet and the flow between the tail
and the droplet. Secondly, the flow near the exit is certainly not one-dimensional.
Contrary to Newtonian flows where the exit liquid jets contract, the viscoelastic jets
increase their diameters (‘die swell’) after the exit [2]. Therefore, a more careful
study is needed to capture all the dynamics correctly and two or higher dimensional
models will be needed.
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