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CHAPTER 4

Catch them ... if you can

Ludolf Meester, Jaap Molenaar, Misja Nuyens, Yves Rozenholc, Koos van Winden

Abstract. An important part of forensic science is dedicated to the
evaluation of physical traces left at the crime scene like fingerprints, bul-
lets, toolmarks etc. These traces are compared with traces from a sus-
pect. The evaluation of physical traces can be interpreted as the compar-
ison of two noisy signals. We introduce an evaluation of the matching
of two noisy signals at diverse scales and localisations in space. In a
multi-resolution way a ”probability” of matching is computed. Further-
more, a description is given to evaluate the complexity of a shoemark.
A likelihood ratio approach is used for comparing two shoemark traces.
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1. Introduction

The Netherlands Forensic Institute (NFI) is part of the Dutch Ministry of Jus-
tice. This large centre of expertise (about 300 staff members) has forensic casework
as core activity. To maintain a high scientific standard, a considerable amount of
the budget (about 5 million euro in total) is spent on Research and Development in
order to develop new methods and procedures. The NFI also participates in train-
ing of crime scene investigators and public prosecutors and the institute maintains
various collections and databases. The projects carried out by NFI cover a wide
variety of topics such as: DNA-recognition, finger print recognition, drugs analysis,
traffic accident analysis, hand writing analysis, paint recognition, etc.

1.1. Forensic science. One of the major areas of interest in forensic science
is to develop methods to evaluate physical evidence found at scenes of crime. The
type of physical evidence found can vary significantly, i.e. traces of blood, hair,
fingerprints, bullets, shoemarks, toolmarks etc. But also the state of development
of the methods of evaluation differ across different types of evidence. For DNA
evidence for instance, scientists have developed models for evaluation which are
accepted by the majority of scientists and judicial systems. For other types of
evidence the evaluation model is not yet as developed. Much of the evidence is still
evaluated by experts in a system that clearly should be classified as ”statement of
opinion based on experience”. These methods are well accepted in most judicial
systems and are still common place in most areas of expertise, see for instance [14]
and [2].
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The problem with most systems of evaluation that are based on ”statement of
opinion based on experience” is that the experts are more or less operating like a
”black box” and it is very hard for other individuals involved in the judicial process
to find out whether in a specific case the ”black box” is working properly. To
solve this problem forensic science has in recent years started to develop models to
assist the experts with the evaluation of the evidence and at the same time give the
judicial system the option to verify, to a certain extent, their conclusions.
The NFI knows the special function statisticus and nearly all activities involve a
lot of statistics. The problems to be considered here are from the division for
‘toolmarks, footwear and tyre impressions’. They concern recognition of toolmarks
and recognition of footwear. We briefly describe them separately.

1.2. Toolmark recognition. The perpetration of crimes often involves the
use of tools like knifes and screwdrivers. Such a tool may leave a mark on the crime
scene, e.g. on a window or door frame. On each tool a characteristic pattern is
present, which can be observed on a microscale. Such a pattern initially stems from
the production process, but it usually gets modified through use of the tool. The
pattern makes the tool unique. It is to be expected that a mark stemming from
a certain tool contains the same pattern, establishing a clear relationship between
tool and mark. In the forensic practice the procedure concerning toolmarks is as
follows. If at the crime scene a mark is detected, its pattern is carefully conserved,
e.g. via photographs and/or special substances. Corresponding tools possessed by
suspected persons are seized. With such a seized tool marks are made under various
circumstances. For example, in case of a screwdriver marks are made at various
angles of inclination between screwdriver and surface. The patterns of the resulting
marks are compared to the mark found at the crime scene. From the result of this
comparison a conclusion whether the crime mark corresponds to the tool or not is
drawn. For this, probabilistic models are used and the probability that the mark
is caused by the tool is expressed according to some classification with levels like
“highly probable, probable, less probable, probably not, certainly not”.

1.3. Shoe print comparison. For shoe print analysis the procedure is similar
to the toolmark procedure. Now the tool is a shoe sole or a bare foot and the mark
is a print of it in sand or soil. The difference with toolmark comparison is that in
shoe print comparison (usually) more complex shapes have to analysed.

1.4. Concepts and organization of the report. The conceptual questions
are the same for both kinds of marks. We mention the main items. The accuracy
with which the marks are recorded is not infinitely high. Measurements have of
course always some inherent inaccuracy, but it also often happens that the mark
at the crime scene has been degraded in the time interval between the crime and
the spot investigation by the forensic experts. The patterns/marks produced in
the laboratory by the tool of the suspect may differ from the mark at the crime
scene, even if it is absolutely certain that the tool is indeed used during the crime,
simply because the circumstances always slightly differ. So, the statement that a
mark stems from a tool will always have a probabilistic character and be based on
statistical considerations. The present project is meant to develop reliable models



Catch them ... if you can 59

to be used for these purposes.
In section 2 we focus on toolmark recognition. There the question to be adressed
is the following. Given two one-dimensional patterns, i.e. functions on an interval,
one representing the mark found at the crime scene and the other produced in
the laboratory by a tool, what is the probability that these two marks stem from
the same tool? Similarity between two functions on a finite interval may be by
chance. How to incorporate the possibility of similarity by fortune into the eventual
conclusion? In section 2 a highly promising method is proposed which turned out
to be very effective in several bench mark tests.
In sections 3 and 4 we deal with the shoe print problem. Here, a new type of question
arises. If in two marks small two-dimensional subpatterns are found that agree to
a high degree, what weight should this get in the whole procedure? Similarity in
highly complex subpatterns must clearly be rated higher than when two simple
shapes agree. This leads to the problem how to define the ‘complexity’ of geometric
patterns in the plane. This issue is dealt with in section 3, while section 4 is devoted
to the development of a statistical model to draw conclusions about similarity of
complete shoe print patterns.

2. Toolmark recognition: testing nullity in a regression framework

In this section 1 we develop a model for the efficient comparison of striation
marks as found when comparing for instance toolmarks or bullets. We here focus
on toolmarks. The classical problem description is as follows: one mark - made by a
tool - is found on the crime scene, the other is made in laboratory after having found
a potential associated object by a suspect. The question then is ”To what extent
do these marks match?” and further ”what is the evidential value of such a match?”.

One way to evaluate this evidentual value is to translate the difference between
the probability of declaring a match if the two marks are made by the same tool
and the probability of declaring the match when the marks are made by different
tools into the likelihood ratio

LR =
P (match | marks made by the same tool)

P (match | marks are made by different tools)
.

The problem that rises immediately when one tries to operationalize this likelihood
ratio approach is that in practice it is very hard to estimate the denominator. In
section 4 we will calculate this likelihood ratio under simplifying assumptions.

In forensic science the physical marks are considered as ”fingerprints” of the as-
sociated tool or gun. It is assumed that if the same tool makes several marks in
a row, the marks will be very similar and distinguishable from marks made with
another tool or gun. The assumption is that this holds for ”good” or ”perfect and
complete” marks. However, in practice the marks are unfortunately not perfect.
Sometimes marks found display only a partial mark, the crime scene mark and
comparison mark are made under different circumstances, tools are used between
the time of the crime and time of making the comparison mark etc. Therefore,

1This section is essentially an abbreviated version of [4]
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noise is added to the ”fingerprint”. Another source of noise is due to the fact that
the marks have to be recorded, photographed and normalized to make a compari-
son possible. In the method decribed below we assume that this prepocessing has
already taken place. A good example of a possible normalization can be found in [3].

In this section these ”fingerprints” are modeled as a noisy one-dimensional or two-
dimensional signal depending on whether it is a striation comparison (reduced to
gray levels along the perpendicular direction of the axis of striation) or a shape print
comparison (reduced to gray levels on a surface). Hence, we have at our disposal
two noisy signals

Y̆ = s̆ + ε̆ and Ỹ = s̃ + ε̃,

where s̆ and s̃, are two vectors in R
n (for one-dimensional signals) or two n1 by n2

matrices (for two-dimensional signals) and where ε̆ and ε̃ are vectors (resp. matri-
ces) of i.i.d. random errors of corresponding sizes.

To answer the question ”Do these marks match?” and to evaluate the strength
of the evidence, we propose to use the difference of the noisy signals Y = Ỹ − Y̆
and to test whether s = s̃ − s̆ equals 0 or not. This test is done not only globally
but also locally: two ”fingerprints” may not fit globally because additional use of
the tool between the making of the two marks might have lead to a change of part
of the ”fingerprint”. Instead of estimating the likelihood ratio of a match based
on the probability of matching when the marks are made by the same tool and
the probability of a ”random match” when the marks are made by different tools,
we use tests of the nullity of s in a specific piecewise way at different resolution
levels to compute a measure of matching. To each piece (i.e. each test of nullity)
is associated an elementary measure of matching. We compute the global measure
of matching as a weighted sum of these elementary measures. The knowledge of
the expert then should be used to convert this measure of matching into a real
probability of matching.

2.1. The statistical problem. Let us consider the regression model

Y = s + ε,

where Y is a vector in R
n of n observations, s is an unknown vector in R

n and the ε
is an unknown random centered vector with i.i.d. components. We consider a test
of s = 0 against s 6= 0 . More precisely, we test the hypothesis

H0 : ”Y is a random centered vector with i.i.d. components”
against

Hs : ”there exists a non-zero vector s in R
n and a random centered vector with

i.i.d. components ε such that Y = s + ε”

Here, various tests of nullity can be considered, associated to specific assumptions
under the non zero hypothesis. Most are based on Gaussian assumptions on the
vector of errors ε and/or an asymptotic construction for n going to infinity and/or
the variance of the signal going to zero. Several tests of nullity in regression or
related frameworks have been studied by many authors. We cite here the work of
[1] in a classical non asymptotic Gaussian framework.



Catch them ... if you can 61

In other classical frameworks related to this problem, such as the Gaussian sequence
model (Gaussian errors and a variance assumed to decrease like 1/n) or functional
regression (s = (S(x1), ..., S(xn)) for S a real function on [0, 1] or R), the authors
consider on one hand stronger assumptions on the noise structure such as Gaussian
noise and/or suppose a known variance, on the other hand regularity assumptions
on S (supposed to be in a Sobolev or a Besov ball for example) and prove (except
for the previously cited work of Baraud & al.) asymptotic results with respect to
the size n. We refer to the recent book [9] of Ingster and Suslina for a complete
study on these asymptotic approaches in Gaussian model for nonparametric testing
and point out the papers of [6], [7], [8], [11], [10], [15], [5].

Let us consider a sequence of subintervals of the integers in {1, ..., n} denoted (Im)m

where m represents an index belonging to a set Mn which can vary with n. Later,
we will state precisely the possible choices of this sequence of intervals. We denote
by `m the number of integers in the interval Im.
For each interval Im, we consider the vector Ym of R

`m which are those coordinates
of Y which are indexed by Im.

Let us consider a real number α in [0, 1] and the sequence of levels

αm = α
[`m]c

#Mn
, for m ∈ Mn

where c is a fixed parameter - used to control the significance of the tests with
respect to the length of the intervals. For each m in Mn, we test at the level αm

whether the sub-vector Ym is 0 or not. Let us note Φm the result of this test:
Φm = 0 if H0 is not rejected and 1 otherwise.

One can remark that the global test of nullity Φ, defined by Φ = 0 if all Φm

are null and 1 otherwise, is of level less or equal to α
∑

m `c
m/#Mn. Indeed

PH0
(Φ = 1) = PH0

(∃m ∈ Mn, Φm = 1) ≤
∑

m∈Mn

PH0
(Φm = 1) =

α

#Mn

∑

m∈Mn

`c
m.

Under Gaussian assumptions and following [1], it is possible to derive the power of
the test Φ for our family of sub-tests (Φm)m.

2.2. A model for evidential testing. In order to construct a model for evi-
dential testing, one has to keep in mind the two characteristics of this problem. The
time interval between acquiring the two noisy signals to be compared can be large.
Then, it is natural to imagine that the signals will always be globally different and
a global test of nullity will always reject the hypothesis H0, hence such a test is
not relevant in practice. For example, the shoe of a criminal may have been used
after a crime and the shape of its surface may have changed. It is important to
understand that the experts usually look only for small features as evidence as they
are usually considered as strongly individualizing. In one-dimensional comparison
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for tool-marks, there are experts that consider five matching lines in a row on two
toolmarks as sufficient evidence. In our framework, this means that s has five co-
ordinates in a row equal to 0.

The model introduced here is based on a dyadic multi-resolution evaluation of the
measure of matching, or measure of similarity, using a dyadic sequence of intervals.
The measure of matching µ has to be all the greater so that the signals match (i.e.
s = 0) on larger interval. It has to be additive with respect to disjoint intervals, i.e.

µ(match on A ∪ B) = µ(match on A) + µ(match on B),

for any A, B s.t. A ∩ B = ∅. Finally it has to be additive with respect to the
resolution, i.e. for any B ⊂ A

µ(match on A, B) = µ(match on A) + µ(match on B).

We make precise our construction for one-dimensional signals (tool-mark evidence).
Similar constructions can be made for higher dimensions. Let us assume that n =
2J . We consider the set of index Mn = {m = (j, k), j = 0, ..., J − 1, k = 1, ..., 2j}
and the integer intervals of the form

Ij,k =

{

i ∈ N,
k − 1

2j
<

i

n
≤ k

2j

}

.

The tests of nullity associated with these intervals are denoted by Φj,k. Let (πj , j ∈
N) denote a sequence of non negative reals such that

∑∞
j=0 πj = 1. The measure of

matching associated to the interval Ij,k is 2−jπj(1 − Φj,k). The global measure of
matching is equal to

µ(matching) =
J−1
∑

j=0

2−jπj

2j
∑

k=1

(1 − Φj,k) = 1 −
J−1
∑

j=0

2−jπj

2j
∑

k=1

Φj,k.

Hence, 2−j
∑2j

k=1(1 − Φj,k) appears as the measure of matching at resolution level
j. Our definition of the measure of matching can be interpreted using conditional
expectations as the expectation of matching at any levels using a prior distribu-
tion π on the resolution levels. More simply, if all tests of the level j are equal to
0 (s = 0 on Ij,k for all k = 1, ..., 2j) the contribution to the measure of matching
is equal to πj and the previous formula defines a number between 0 and 1−∑∞

j=J πj .

To ensure that the measure of matching is invariant by translation a natural se-
quence of πj is the uniform distribution by level: πj = 1/(2log n) for j = 0, ..., J − 1
and 0 otherwise.

By construction, on each interval I , the test associated with I makes an error
of first kind (i.e. does not reject H0 when s is non zero) if s is too close to 0 on I
- the precise sense of ”close” depend on the choice of the test of nullity considered
and is not discussed here as this has to be studied in practice using real data. Using
a uniform distribution by level (πj = 1/(2log n)), we give to the errors of first kind
a weight which is only proportional to the level of each elementary test and hence
which is only proportional to the length of the interval up to the power constant c.
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An other way to compute a measure of matching is to consider the p-value of each
test Φj,k denoted ρj,k and to define

µ(matching) =
J−1
∑

j=0

2−jπj

2j
∑

k=1

ρj,k.

In order to keep translation invariance here again a natural distribution for the πj

is the uniform by level previously defined.

3. Shoe print comparison: complexity of patterns

Shoe print patterns usually contain a lot of details, but for shoe print compari-
son only those subpatterns are relevant that are not general and found on all shoes
of a specific type. In the forensic practice one is interested in subpatterns that
are supposed to be characteristic for the shoe under consideration. When compar-
ing the patterns of two shoe prints it may happen that the prints match at some
subpatterns but differ at others. Matching of subpatterns means that both prints
have similar subpatterns at similar positions. The matching is never perfect due to
circumstances. In Figure 3 examples of realistic subpatterns are shown.

Figure 1. Some realistic subpatterns.

The probability that the two prints stem from the same shoe has to be deter-
mined via some probabilistic model. Such a model will be proposed in the next
section. A necessary ingredient of such a model is the rate of complexity of a
subpattern. If two prints match with respect to a simply shaped pattern, this
agreement has to be weighed differently from a match at a highly intricate pattern,
simply because a shape with high complexity characterizes the shoe to a higher
degree. The underlying idea for this is: the more complex a feature, the more rare
it is. The question here is how to define the complexity of a pattern. We shall
deal separately with one and two-dimensional features. In fact it could suffice to
deal only with two-dimensional patterns, since the one-dimensional case is a special
case then. However, we pay rather extensive attention to the one-dimensional case,
since it helps in developing and clarifying ideas. Moreover, in the forensic practice
one-dimensional features on shoe prints are treated as a special class. For this class
tables are available in which the complexity of these patterns is specified according
to common sense and expertise. Comparison of the numbers of these tables and the
present results is one of the intriquing aspects of this project. This comparison can
not yet be reported here, since this is part of future research.

The complexity of shapes is hard to define in general. It is to be expected that
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any definition involves a relative measure with which two shapes can be compared.
The absolute value of the complexity of shapes is in practice irrelevant. A particular
nice starting point is the following definition of complexity, which is from [12] and
[13].

Definition 3.1 (Complexity of an object). The complexity of an object is the
length of its description in some language.

Of course, one has to choose the language suitable, depending on the nature of the
object. To illustrate this definition, consider the following examples.

What is the complexity of a natural number?

The numbers 0, 1, 2, .., 9 are described with one digit, the numbers 10, 11, 12, .., 99
are described with two digits, etcetera. In general, the numbers 10n, .., 10n+1 − 1
are described with n digits. In this simple case it is clear that the parameter n is a
good measure of the complexity c. So for a natural number N :

(1) c(N) ∼ n ∼ log(N) .

Here, the symbol ∼ stands for ’scales with’; it implies that possible multiplicative
and/or additive constants are left out.

What is the complexity of the repeating sequence of finite length

S = 104104104104104?

Since the sequence is repeating, it can be described by mentioning the periodic part
(104) and the number of times it is repeated (5). So, the parameters are period and
repetition rate. As seen above, the length of a natural number grows with the log
of its value. It is not directly clear how to combine the complexities of period and
repetition rate. At first we tend to add them. For short series this is appropriate.
However, in the limit of a very long series, the contribution from the repetition rate
will then strongly dominate the contribution from the period and the information
in the period gets lost. For long series we prefer to multiply both contributions, so

(2) c(S) ∼ c(period) ∗ c(repetition rate) .

What is the complexity of an arbitrary real number?

An arbitrary real number needs infinitely many digits to describe it, so it has
complexity c = ∞. Note that the real number π has also infinitely many dig-
its. However, it can be described alternatively by a few words, i.e. as the ratio of
circumference and diameter of a sphere. The number π is certainly not ’arbitrary’.

3.1. The complexity of one-dimensional patterns. Here, we restrict our-
selves to shapes that consist of one-dimensional components such as line and arc
segments.
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Line segment L
From the very general definition above we may deduce a definition for a line segment.
Such a segment can be considered as a sequence of identical pixels, so with a simple
internal structure, and with a certain length D. We assign to a single pixel the
complexity one. Formula (2) then yields

(3) c(L) = log(D/D0) .

Here, D0 is the minimal length that is relevant for the shoe print under considera-
tion. This is dependent on the signal to noise level of the print. A typical value is
D0 ≈ 1.5 mm. For D = D0 we have c(L) = 0.

Two line segments L2,V forming a ’V’-shape.
In practice these shapes are considered a relevant separate class. The total size of
this pattern is measured by the diameter D of the smallest circumscribing sphere.
The complexity of the internal pattern is measured by counting the number of pa-
rameters characterizing it. We find two lengths and an angle. Only the ratio of the
lengths is relevant, since the pattern may be freely scaled: its size is accounted for
via D. So, we have two dimensionless parameters and this leads to

(4) c(L2,V ) = 2 log(D/D0) .

Two crossing line segments L2,C.
We proceed in an analogous way. The internal structure of L2,C has 4 lengths and
one angle. So we have 4 dimensionless parameters and

(5) c(L2,C) = 4 log(D/D0) .

Triangle L3,T .
The internal structure of L3,T is characterized by 3 lengths. So we have 2 dimen-
sionless parameters and

(6) c(L3,T ) = 2 log(D/D0) .

Three crossing line segments L3,C.
The internal structure of L3,C is characterized by 7 lengths and two angles. So we
have 8 dimensionless parameters and

(7) c(L3,C) = 8 log(D/D0) .

Arc (circle segment) A.
The internal structure of A is characterized by its length, the radius of the circle,
and the angle. We remark that the length of the segment is different from the
diameter D of the circumscribing sphere. For a full circle, D equals the diameter
of the circle, but the length of A equals 2πD. We have 2 dimensionless parameters
and

(8) c(A) = 2 log(D/D0) .

Arbitrarily curved line segment
An arbitrarily curved line segment can in good order be approximated by series
of arcs of different radii. This introduces an error and the expert has to specify
which error is still acceptible. The complexity of the curve is then the sum of
the complexities of the circle segments. So, if N segments are used, the internal
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structure of the curve is 2N . An alternative approach is to construct a polynomial
that fits the curve reasonably well. The number of coefficients of the polynomial
then yields the internal complexity of the curve. So, if the polynomial is of order
N , the complexity is N + 1.

3.2. The complexity of two-dimensional features. Figure 3.2 gives some
idea how two-dimensional features look like in the shoe print practice: from a com-
pletely filled circle to a more or less randomly distributed pattern. Here, black and

Figure 2. Some two-dimensional shapes.

white shapes are studied that are specified via pixels on a grid. We start from the
intuitive observation that the complexity of the shape is low if it contains a lot of
symmetry and is high when we can not discover any regular pattern in it. It is clear
that if the pattern is completely random we have to specify it pixel by pixel. In the
latter case we expect that the white and black pixels are distributed more or less
uniformly over the shape. This suggests to introduce for a two-dimensional feature
the concept of entropy. We define it in this context as follows.

a. Put a square grid with boxes over the object. Take the grid size equal to n
pixels. The resulting number of boxes is Nn, say.
b. The number of pixels in each box is n2. In box i ∈ {1, . . . , Nn} we count the
number nb of black pixels; so box i has n2 − nb white pixels.
The entropy in box i is then defined as:

Definition 3.2 (Entropy of box i).

si =
1

a
log(n2

nb
),

with (N
M ) for arbitrary N and M defined as usual by

(N
M ) =

N !

M !(N − M)!
.

The normalization factor a is defined as a = log(n2

n2/2). This factor is chosen

such that the entropy in box i is maximal and equal to 1 if there are as many black
pixels as white pixels, i.e. nb = 1

2n2.
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Summing the entropies over all the boxes we get the total entropy sn of the grid
under consideration:

(9) sn =

Nn
∑

i=1

si.

The entropy of course depends on the grid size n. By varying n, it is measured
on which length scale the object has most structure. The complexity is therefore
defined as the maximum entropy under variations of the grid size. So

Definition 3.3 (Complexity of two-dimensional objects (not normalized)).

c̄ = max
n

sn .

Here, n is varied continuously. In practice, however, one usually will halve the
grid size again and again. It is clear that boxes with no variation in colour have
vanishing entropy. So, if an object consists of subpatterns of one colour, the in-
ner part of such a subpattern will not contribute as soon as the grid size becomes
smaller than the size of the pattern. Only boxes containing parts of the boundaries
have variation in colour and contribute to the entropy. We conclude that this com-
plexity c̄ determines the total length of the boundaries in and around the object.
This agrees with the intuitive notion of complexity for objects of this kind. The
important point here is that the definition also applies to objects that do not con-
sist of well-defined subshapes of one colour, but have a more or less fractionated
appearance or even a fractal dimension.

The definition of c̄ above has the disadvantage that it does not yet reduce to the
definition for complexity in one dimension in case of a line segment. This is because
c̄ is not yet normalized by the size of the object as a whole.

Example: reduction to a line segment
As an example we take a line segment consisting of 8 horizontal pixels. According
to the procedure described above, it has to be covered by an 8 ∗ 8 grid. If we take
n = 8, this implies that the segment is covered with only one box of size 8 ∗ 8.
Applying the formula we find s8 ≈ 0.5. Halving the grid size and thus taking n = 4,
we obtain that s4 ≈ 1.5. Two grid boxes have vanishing entropy since they are
uniform in colour. The other two contribute equally. Halving the grid size again we
find that now 4 grid boxes contribute and s2 ≈ 4.0. Of course, s1 = 0, since grid
boxes consisting of one pixels have vanishing entropy. The maximum is thus found
for n = 2 and we denote this n-value by nmax.

To manage that the two-dimensional complexity definition reduces to the one-
dimensional one if applied to a line segment, we adjust the c̄ a bit. Let, as usual,
D be the diameter of the smallest circle around the object. Then, the following
definition has the required properties:

Definition 3.4 (Complexity of two-dimensional objects (normalized)).

c = c̄
nmax

D
log(D/D0).
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This complexity could be conveniently used as weight function when two shoe
print patterns agree on one or more shapes.

4. Shoe prints comparison: likelihood ratios

We are given two prints. One is a trace found on the crime scene. The sec-
ond is a print of the shoe of the (a) suspect. What can we say, on basis of these
two prints, about the two statements ’The shoe of the suspect made the print on
the crime scene’ and ’The shoe of the suspect did not make the print on the crime
scene’? We will measure the strength of the evidence by a likelihood ratio.

The characteristics of a shoe (print) are the marks (damages) on it. Each mark
is given by a vector (x, y, s, α), where (x, y) are the coordinates of the mark on the
shoe, s is the complexity of the shapes of the mark and α is the orientation of the
mark. For reasons of simplicity, we describe the shape of the mark by its complexity
and not shape itself. Of course this results in the loss of some information.

Suppose the shoe of the suspect contains K marks and the crime scene print contains
K ′ marks. We then define

Definition 4.1. The suspect evidence E is given by the matrix

E = {(xi, yi, si, αi), i = 1..K}.
The crime scene evidence E ′ is given by

E′ = {(x′
i, y

′
i, s

′
i, α

′
i), i = 1..K ′}.

Note that the order of the rows of E is not important. Furthermore we define
(x, y) = (xi, yi)i=1..K , s = (si)i=1..K and α = (αi)i=1..K and likewise for the columns
of the crime scene evidence matrix.

There are two possible worlds. We call them Hp and Hd, where the p stands
for prosecutor and the d for the defender. In the world Hp, the shoe of the suspect
made the print. The probability measure in this world is Pp. In Hd, the shoe of the
suspect did not make the print. In this second world the probability measure is Pd.

4.1. A likelihood ratio. A measure to indicate the strength of the evidence
supplied by the two marks is the so-called likelihood ratio. The likelihood ratio of
an event A in the two worlds Hp and Hd is defined by the ratio

(10) LR(A) =
Pp(A)

Pd(A)

if the two probabilities are well-defined and the denominator is non-zero. In case
the event A is defined in terms of continuous random variables, the likelihood ratio
is defined by the quotient of the densities fp and fd i.e. LR(A) = fp(A)/fd(A). In
the following we will encounter events defined in terms of discrete and continuous
random variables. For reasons of simplicity, we will, with abuse of notation, use the
notation of (10) for the continuous case as well.
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The event {E, E′} consists of those outcomes in the probability space that result
in the suspect evidence E and crime evidence E ′. To measure the strength of the
evidence supplied by the two prints, we calculate the likelihood ratio LR of {E, E ′}
in the two worlds Hp and Hd, i.e.

LR =
Pp(E, E′)

Pd(E, E′)
.

The numerator of LR is the probability that in the world where the shoe of the
suspect is the shoe that made the crime scene mark, the event {E, E ′} happens.
The denominator is the probability that {E, E ′} happens in the world where the
suspect is innocent. The quotient of these two terms can be used to measure how
likely it is that the suspect is guilty: a high value of LR pleads against him, a low
value strenghtens his defense.
In the following we assume that the position of the mark(s), their shape and their
orientation are independent. This assumption is not clearly untrue, but whether
this independence is valid should be checked with (the) data. Conditioning on K
and K ′ then yields

LR =
Pp(K, K ′)

Pd(K, K ′)

Pp((x, y), (x′, y′) | K, K ′)

Pd((x, y), (x′, y′) | K, K ′)

Pp(s, s
′ | K, K ′)

Pd(s, s′ | K, K ′)

Pp(α, α′ | K, K ′)

Pd(α, α′ | K, K ′)

(11) = LRnumber × LRposition × LRshape × LRorientation.

4.2. One mark. As an indication how to obtain (11), we now calculate each
of the four factors of the likelihood ratio LR in the case that both the crime scene
print and the shoe of the suspect show one feature, i.e. K = K ′ = 1.
The calculation of the four likelihood ratios in (11) follows the same pattern. In the
numerator we calculate the probability under the assumption that the crime scene
print was made by the suspect’s shoe. Hence there is in fact one shoe! The proba-
bility is then a product of two factors: the probability (density) that an arbitrary
shoe has the given property and the probability (density) that two different prints
from the same shoe differ a certain (given) way.

For the denominator, the assumption is that the two prints are made by two different
shoes. The two shoes have nothing to do with each other and are independent. The
probability (density) that they both contain certain features is then the product of
the probability (density) that an arbitrary shoe contains cetain feature(s) and the
probability that a print from an arbitrary shoe contains certain (other) feature(s).
Note that these two probability (densities) are not (necessarily) the same: in the
shoe print there is less detail and much more noise.

•LRposition. Let us first look at the numerator. In the world Hp the shoe of
the suspect made the crime scene print. The positions of the two marks however
do not have to coincide: both in the making of the print by the suspect and in the
measuring of the positions (x, y) and (x′, y′) (little) errors are made. These errors
depend on the surface on which the crime scene print is found as well. It seems
reasonable to assume that (x−x′, y−y′) has approximately a bivariate normal dis-
tribution with mean zero, covariance matrix Σsurface. and density fsurface. Let the
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surface area of the shoe be B. Assuming that the position of the mark is uniformly
distributed over the surface of the shoe, we have

Pp((x, y), (x′, y′) | K = 1, K ′ = 1) = B−1fsurface(x − x′, y − y′).

For the denominator we move to the world Hd, where the shoe of the suspect did not
make the print. Hence the numerator is the probability (density) that the marks on
two different shoes are situated in positions (x, y) and (x′, y′) respectively By the
uniformity assumption above and the independence, this density is 1/B2. Hence

LRposition =
Pp((x, y), (x′, y′) | K = 1, K ′ = 1)

Pd((x, y), (x′, y′) | K = 1, K ′ = 1)

(12) = B−1fsurface(x − x′, y − y′)/B−2 = Bfsurface(x − x′, y − y′).

Note that (12) does not depend on the unit in which x, y and B are measured.
Indeed, changing the unit of measurement by a factor c results in c−2Bc2fsurface

and c nicely drops out.

•LRangle. Assuming the distribution of the angle of the mark is uniform, again, the
numerator consists of a ’uniform’ term 1/(2π) and Gaussian ’error’ term gsurface(α−
α′), again depending on the surface where the crime scene print was found. In the
denominator the uniform term 1/(2π) is squared. Then LRangle is given by

LRangle = 2πgsurface(α − α′).

•LRshape. For calculating the likelihood ratio of (complexity of) the shapes, we
use the theory of section 3. The complexity of a mark is an element of a countable
set. Its discrete distribution Pcompl should be obtained from the data, possibly in
combination with the theory of section 23. Let Perr(s, s

′) be the probability that a
shoe with a mark of complexity s produces a print with a mark of complexity s′.
As before, this is term caused by a ’reproduction error’. Then

(13) LRshape =
Pcompl(s)Perr(s, s

′)

Pcompl(s)Pcompl(s′)
=

Perr(s, s
′)

Pcompl(s′)
.

Note that Perr(s, s
′) is not the same as the probability that a print with a mark of

complexity s′ was produced by a shoe with a mark of complexity s, nor is it equal
to Perr(s

′, s).

•LRnumber. In the numerator we have Pp(K, K ′) = P (K ′ = 1)Pp(K
′ = K | K ′ =

1). The probability that the shoe of the suspect contains one mark given that the
crime scene print (made by the same shoe!) contains one mark, Pp(K

′ = 1 =
K | K ′ = 1), depends on a number of things:

• the time the shoe has been used between the crime time and the moment the
shoe was secured

• the probability that a mark on a shoe actually is found in a print the shoe leaves
behind - this in its turn depends on the surface

• the probability that a mark in the crime scene print is caused by something
temporarily attached to the shoe, for instance a leaf, a twig, etcetera.
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Therefore this probability is perhaps the most complex of all the probabilities in
this section. Further study (of data) could reveal its nature. Let us conclude by
calculating the denominator: Pd(K, K ′) = P (K = 1)P (K ′ = 1). The likelihood
ratio then satisfies

LRnumber =
Pp(K = 1| K ′ = 1)

P (K = 1)
.

If the marks on the suspect’s shoe are similar to those on the crime scene, the
likelihoods described above will in general be larger than one. Hence, when it is
impossible to compute all likelihoods, we can find a lower bound for LR by com-
puting some of them. Such a lower bound might already be powerful enough for a
clear conclusion about strength of the evidence.
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