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CHAPTER 1

The Artis Problem

Chris Budd, Mark Peletier, Geertje Hek, David Iron, Andre Leger, Edi
Cahyono, Ignacio Guerra, Paul Dario Toasa, JF Williams.

ABSTRACT. The Artis aquarium has had difficulty maintaining a reasonable
temperature in the recently install mammoth sea water tanks during the peak
of summer. At this time the approximately 400 000 liters of water may be as
much as 3 degrees Celsius too hot. This represents a considerable amount of
energy to dissipate. Any solution to this problem must take into account the
limited budget of the zoo, the heritage status of the building and the health
of the fish in the tank. In this report, we analyse the major sources of energy
entering and leaving the system. From this analysis, we find that the most
effective method of reducing the water temperature is to increase the amount
of evaporation from the system.

KEYWORDS: energy balance, water temperature, conductive and radiative en-
ergy

1. Introduction

The Artis zoo has a number of aquaria in one heritage building, each
with its particular environmental requirements. A recent addition of a large
mammoth tropical sea water tank has introduced some problems. This tank
is situated in a corridor and measures 5 by 2.5 by 20 meters. The ideal
temperature for the tropical fish in the mammoth tank is 24 degrees Celsius.
As there is not much daylight, a dozen lamps have been placed just above the
aquarium to make sure the fish inside are visible. However, these big lamps
produce a lot of heat. When in summer time the outside temperature reaches
25 degrees, the temperature in the corridor containing the mammoth tanks
increases up to 30 degrees. The water itself becomes 27 degrees, which is too
hot for the fish inside. In the neighbourhood of the lamps, the temperature
rises to 40 degrees. Just under the roof sometimes temperatures of 60 degrees
have been measured. This information is summarized in figure 2(a).

The problem presented to us is to reduce the temperature of the water
in the mammoth tank at a minimal cost with the constraints of minimal
modification to the heritage building.

Throughout this report, we speak about observations and assumptions.
The observations were done during two visits to the aquaria, where we could,
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Fi1GURE 1. Observation of the aquarium roof.

among other things, inspect the basins in the catacombs and condensation
above them, the (lack of) ventilation, and the construction of the whole
building including basins, tanks and even the roof. See figure 1. Throughout
the report, we also use various material constants. These are all taken from

[1].
2. Facts about the Problem

We will restrict our analysis to the largest tank, the mammoth tank. The
water in this system, approximately 440 000 1, is divided in two volumes.
The first volume is the tank in the public area. The second is the reservoir in
the catacombs where the water is oxygenated. The water is pumped through
the system with a circulation time of approximately 4 hours. The water of
the total system can get up to 3 degrees Celsius too hot. Although the water
in the system appears to be well mixed, there is a difference in temperature
between the reservoir and the tank of about 0.1 degrees Celsius. Since the
tank contains sea water, it is not possible to use a simple heat exchanger to
cool the tank as any metals introduced into the water will release ions which

is bad for the fish.
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FIGURE 2. (a) Schematic picture of the mammoth tank and reser-
voir, (b) The energy inputs and outputs of the tank and reservoir.
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3. Energy Balance

Here we consider the various energy sources and sinks in the system.
To perform the energy balance, we will consider the mammoth system as
two separate systems, i.e. the water in the tank and the water stored in
the reservoir in the catacombs. In the tank the two main sources of energy
are sunlight and the lamps heating the water. This energy is then either
dissipated or stored in the water. The dissipation is conductive through the
tank glass and walls. The water in the reservoir then dissipates more energy
by evaporation and further conduction into the ground. We list each of these
terms here.

Sources and Sinks

Qs Solar Energy

Qr Energy from Lights

QEr Evaporative Energy Loss from Tank
Qcr Conductive Energy Loss from Tank
QER Evaporative Energy Loss from Reservoir
Qcr Conductive Energy Loss from Reservoir

Constants and Variables
As | Percentage of Solar Energy Absorbed by Water
AL | Percentage of Light Energy Absorbed by Water

Ty Temperature of Water in Tank
Ty Temperature of Water in Reservoir
AT Change in Temperature

Now we balance the energy in the tank and in the reservoir separately.
First in the tank,

(1) AsQs +ALQrL = Qpr(T2) + Qor(T2) + 0AT,

where 6 is the amount of energy to change the temperature by 1 degree in
the 4 hour cycle. The term AT is the energy that is stored in the water as
the temperature in the tank increases by AT. We calculate 6 as

4.18 x 103 -4 x 10°
4 - 3600

Here c is the specific heat of water, ® is the flow rate, and p the density.
The energy balance in the reservoir is given by

(3) AT = Qcr(T1) + Qrr(Th) -

Note that the decrement in the water temperature in the reservoir is equal to
the increment in the tank. This decrement corresponds to the energy loss by
conduction and evaporation. The situation is illustrated in figure 2(b). We
may make some simplifications from the observations made at the aquarium.
The air in the space above the tank appeared to be trapped and at 100
percent humidity, thus the evaporative energy losses in the tank system are

~ 10°WK L.

(2) 0=cPp=
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negligible. The temperature change between the two systems, AT = T} —Tb,
is approximately 0.1 degrees Celsius, and thus we may take 17 ~ 15 ~ T.
Under these assumptions, (1) and (3) may be simplified to

(4) AsQs +ALQr = Qor(T) + Qcr(T) + Qer(T) .
4. Detailed Analysis

In this section we will examine each term in (4) and find estimates of
each one.

4.1. Energy Inputs. As very little convection was observed, we will
assume that most of the energy enters the system by radiation. The to-
tal energy used by the lamps is approximately 10 kW. Since the lights are
incandescent and very inefficient we will assume that all of this energy is
transfered to the water. To find the energy added to the water from solar
radiation, we use Stefan-Boltzmann law for black body radiation. In bad
cases the temperature above the roof can reach 50 degrees Celsius or more
and the water may be 25 - 27 degrees Celsius. We are finding the energy
flux through a plane and thus divide the total energy by 2 as half will be
transmitted and half will be reflected up. Finally, we estimate A\g ~ 1/2.
Thus, we have the following estimates for the energy inputs:

Lights
(5) Q1 ~ 10kW total,
(6) AL ~ 1, estimate.
Sun
(7) Qs ~ 5 (Tioor = THA ~ 10kW,
(8) As ~ 0.5, estimate.

Here 0 = 5.6 x 1078 Wm™2K™* is the Stefan-Bolztmann constant, Tsoof is
the temperature just under the roof, for which we took 7" = 323 K in this
estimate, and A = 5 x 20 m? is the area of the top of the tank. Furthermore,
we took T = 298 K. For really hot days, when Tj,0f = 333 K (60 degrees C)
and T = 300 K (27 degrees C), Qg reaches about 20 kW.

Note here, that the order of magnitude of energy input by the lights and
by the sun on warm days is the same. Even if we would have A\g ~ 1, this is
still the case.

4.2. Conductive Energy Losses. We will now estimate the energy
loss in the system due to conduction. In the tank, we will assume that all
of the energy is lost through the glass wall of the tank, as the back of the
tank is made of thick rock and is a much better insulator. We will also
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assume that the energy is convected away from the glass ideally. Under
these assumptions, we get

(9) QCT = ur (T - Tambient) )

where pr is the total thermal conductivity of the glass wall in the tank and
is given by

(10) pr = k.

Here, A is the area of the glass, d is the thickness of the glass and k is the
thermal conductivity of glass. When we substitute in these constants we
find that Qcr = 0.93 x 50/0.1 ~ 0.5 kW.

The estimation of the energy loss in the reservoir is more complicated,
as the heat will flow into the ground and we may not assume that the energy
is being removed ideally at the outer surface of the reservoir. To simplify
the calculations, we will assume that the reservoir is hemispherical in shape.
Although this will overestimate the heat loss to the ground, the result will
be of the same order of magnitude as the actual losses. To find the thermal
conductivity of such a reservoir, we assume that the temperature profile in
the soil outside of the reservoir is radially symmetric and given by

T — Ty
(11) Ts(r) = TSOIIR + Ty forr > R.

Here, T is the temperature of the water, Ti; is the temperature of the soil far
from the reservoir, r is the distance from the centre of the reservoir and R is
the radius of the reservoir. Since the approximate dimension of the reservoir
is 15 meters by 35 meters, we approximate R by 10 meters. Moreover, we
approximate Ty, by 16 degrees Celsius. The conductive loss of the reservoir
into the ground is then given by

O

_ 2

Qcr = —k(2nR?) > L
(12) = 2 RE(T — Tuoi1) -

In other words, the thermal conductivity ugr of the reservoir is 2w Rk. Sub-
stituting all values into (12), we find that on a hot summer day, so for 7' = 27
degrees Celsius, the conductive loss in the reservoir is approximately 0.5 kW.

4.3. Evaporative Energy Losses. We now calculate the amount of
energy removed from the system due to evaporation. We first make a few
assumptions based on observations of the aquarium. We will assume that all
of the evaporation occurs in the reservoir, since we observed much conden-
sation near the air outlet in the catacombs, and no condensation above the
tank. Moreover, the air just above the tank has the same temperature as
the water inside the tank, and the area of the tank is much smaller than the
area of the reservoir. We also assume that air enters the reservoir at 80%
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saturation (typical conditions for Amsterdam in mid-summer) and then is
fully saturated and leaves, via the vent, at 100% saturation. Under these
assumptions, the evaporative loss is given by

(13) QEr = pAVL

Patmos

where pp are the partial pressures of water vapour inside the catacombes and
outside the building, p is the density of moist air (~ 1.3 kg/m?), patmos is the
atmospheric pressure (~ 100 kPa), L is the latent heat of water (~ 22.6 x 10°
J/kg), A is the area of the vent (~ 0.04m?) and V is the velocity of air
through the vent (and above the water). Since we have 100% saturation
inside, we have ppinside = sp(T'). Here sp is the saturation pressure at tem-
perature 7', and the air temperature is approximated by the water temper-
ature. Outside, saturation is again expected to be 80% on average on a hot
summer day, S0 pPoutside = 0.8 X SP(TLambient)- In the summer, approximately
2 cubic meters of distilled water per week must be added to the system to
maintain the volume. This is equivalent to approximately 6 kW of evapora-
tion. Plugging this into (13), with 7" = 27 and an estimate of Ty, = 20 for
the outside temperature averaged over a full hot day in summer, results in
an air velocity of 2.4 m/s.

(ppinside - ppoutside) )

4.4. Summary of Energy Balance. Before proceeding to the full en-
ergy balance, we may compare one of our calculations with observed results.
We will calculate the change of temperature in the reservoir and compare this
to the observed change which is approximately 0.1 degrees Celsius. Recall,
the temperature change in the reservoir is given by

(14) AT = Qcr + QER,

where § ~ 10°WK ! is the amount of energy to change the temperature by
1 degree in the 4 hour cycle, Qgr is the evaporative loss which is observed
to be about 6 kW, and Q¢r is the convective loss which was calculated to
be about 0.5 kW. Substituting this results in a value of AT = 0.065 degrees
Celsius, which is the right order of magnitude. We may now approximate
Ty ~ Ty ~ T indeed with some confidence. Substituting (13), (5), (7), (9)
and (12) into (4) results in the following equation relating the temperature
of the water with the ambient temperature, the heating effect of the sun
(via the roof’s temperature) and the velocity of air through the vent in the
reservoir,

(15
HeE

roof

— THA+10 = g (T = Tam) + Z22E (sp(T) — 0.85p(Tarmb))
+,U/R(T - Tsoil) .
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We now approximate sp(T") following estimates in [2], fitted to the values
T =293 and T' = 303. This yields
sp(T) = 0.16 x 1012 - exp(—5.3 x 10%/T").

Roughly, this gives pressure values of 3 - 4 kPa in the range of interest. Using
this estimate we provide graphs of relation (15) in figures 3, 4, 5 and 6.

Water Temperature as a Function of Fan Air Velocity (TA=24degrees)
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FIGURE 3. Water temperature versus fan air velocity. Higher lines
correspond to higher roof temperature by the sun.

5. Conclusions

The above figures may be used as an indication of the relative influences
on the water temperature of fan air velocity, ambient temperature and ‘solar
temperature’, i.e. temperature just under the roof caused by the sun. Fig-
ures 4 and 5 show the dependence of the water temperature on the ambient
and solar temperatures for fixed fan air velocities. The lines in these figures
have slopes between 0.1 and 0.4, so the dependence is not very strong. In
figure 3 however, the lines have slope ~ —2 in the regime around the current
fan air velocity. For fixed solar and ambient temperature, the water tem-
perature decreases by about 3 degrees if the fan air velocity is doubled from
2.4 to 4.8 m/s.

Therefore we conclude from the figures that the largest gains may be
obtained by increasing the flow of air through the reservoir. This is relatively
inexpensive and should not interfere with the appearance of the building.
However, it must be noted that in the construction of relation (15), it was
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Water Temperature as a Function of Ambient Temperature (TS=40degrees)
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FIGURE 4. Water temperature versus ambient temperature. Lower
lines correspond to increasing fan air velocity.

Water Temperature as a Function of Solar Temperature (TA=24degrees)
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FIGURE 5. Water temperature versus solar temperature. Lower
lines correspond to increasing fan air velocity.

assumed that an increase in the fan velocity will be proportional to the
increase in water vapour leaving the system. This will not be true unless
some care is taken. The area around the fan is very leaky and unless this



20 Chris Budd et al.

3D Surface Plot of Water Temperature as a Function of Solar Temperature and Fan Air Velocity
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FiGURE 6. Overall picture.

is addressed, increasing the fan velocity will only draw outside air from the
source near the fan. This will do nothing to increase evaporation. We also
note that even though figure 5 suggest that reducing the amount of solar
radiation will have a minimal effect on the temperature of the water, a
reduction in the influx of solar energy could be achieved quite cheaply by
reflective blinds or the growth of ivy and should thus also be considered.
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