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Abstract

The impact of user mobility on network planning is investigated. For a system
of two base stations the stationary distribution of a Markov chain, including
mobility, is computed.
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7.1 Introduction

For the 3rd_ generation mobile communication system UMTS (Universal Mobile
Telecommunication System) a network has to be planned. Therefore locations of
the base stations have to be chosen. One question to answer here is, what should be
the base station density. This is an optimization problem with a trade off between on
the one hand the investment costs, and on the other hand the quality of service, here
expressed by (i) the probability of blocking, i.e. the probability that a new request for
a call has to be blocked because there are no channels available and (ii) the handover
blocking probability, i.e. the probability that for an existing call, moving from one
base station to another, a so called hand over, there is no channel available at the new
base station.

We have to deal with two effects. There are fresh calls arriving in a cell. This
is typically a Poisson process. Secondly, we assume mobility in the system. While
making a call, the user might move from one cell to another. We reserve capacity in
the base stations to serve hand over calls. From a quality of service point of view it
is much worse to drop an existing call when the user moves form one cell to another,
than to block a new call.

The main problem to be addressed here is to quantify the effects of user mobility
on the density of the base stations.

79



SWI2000 UMTS Network Planning - The Impact of User Mobility

Figure 7.1: Hexagonal covering of the area. In this paper we focus on the two-base-
station system indicated by the light-grey cells

7.2 A simple model

We assume, in the planning stage, that the area we are interested in is covered by
hexagons. In each hexagon there is a base station that can accept a number of calls.
We drastically simplify the analysis in this paper by concentrating on a two-base-
station system. In addition we assume these cells to be equal. See Figure 7.l.
The state of the system at a particular time instant is characterized by the two-tuple
(nj, n2), where n, is the number of calls at cell i. We assume that for both cells the
capacity is N. The state space of the system is depicted in Figure 7.2.

Our approach is to calculate the stationary distribution ptn«, n2). In the station-
ary distribution the transition rates coming from a state balance with the transition
rates entering into that state. Therefore the distribution doesn't change in time. The
stationary distribution tells us the average fraction of time the system is in a certain
state.

Once the distribution is known the probability of blocking, Pb1ock> can be obtained
by identifying the states that don't allow an extra fresh call and adding up their prob-
abilities. In Figure 7.2 these states can be found on the lower and right boundaries.

The probability of dropping a call Pdrop is the fraction of the calls that, when
moving from one cell to another, is dropped. We take into account that different states
have different weight by the number of calls in that state. This probability follows
from the transition rates due to mobility and is given explicitly in Formula (7.4).

If we make no distinction in the treatment of fresh calls and hand over calls, we
obtain a Markov process for which we can easily solve the stationary distribution.

We assume that the arrivals of fresh calls in the cells is a Poisson process. Let A
be the arrival rate of fresh calls and let t be the mean of the exponentially distributed
call-length. The transition rate due to terminated calls is proportional to the number
of existing calls in the cell. Therefore it is expressed as uru, Without mobility we
have the following transitions around the state with (nj, n2) = (i, j): To obtain the
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Number of calls in cell 2 ----+

Figure 7.2: State space for the two-base-station system. N denotes the maximum
number of calls accepted in a cell

stationary distribution we need to solve the balance equations:

A(p(i - 1,j) + p(i, j -1)) + JL«i + l)p(i + 1,j) + (j + l)p(i, j + 1))

= (21.. + JL(i + j))p(i, j).
(7.1)

A solution is given by

(!)i+j

(..) I-'P I, J = c-.,-.,-,I.J.
(7.2)

where c is the normalizing constant. From this distribution we can calculate the
probability of blocking by

N (A)N
Pb10ck= Lp(N, j) = -----':-l-(-A-c)j"

j=O N! Lj=o ji IL
(7.3)

7.2.1 Including mobility

Next we allow a call to move from one cell to the other. We assume for this process
an exponential distribution with mean ~, i.e. the average time that a call resorts under
the same antenna is ~. Apart from the transitions in Figure 7.3 there are a number
of extra possible transitions. In the interior of the state space there are two diagonal
'arrows' leaving each state, corresponding to calls moving from one cell to another.
Their transitions rates are proportional to the number of calls in the cell that the caller
is leaving. Likewise there are two additional transitions towards each state. Note that
these four transitions balance each other if the distribution (7.2) is used.
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Figure 7.3: Transitions without mobility around the state (i, j)

On the boundary of the state space things are more complicated, as a hand over
call is not accepted by the new base station. Suppose a call moves from cell 1 into
cell 2, which has got no capacity available. This corresponds to the arrow in Fig-
ure 7.4 going to the upper-right. However since the call is not accepted in cell 2, the
number of calls in this cell is not raised. The call disappears from celll, so instead of
pointing to the state (i - 1, j + 1), the arrow points to the state (i - 1, j). Similarly,
there is another transition from the state (i + 1, j) to the state (i, j). This leads to the
transitions as depicted in Figure 7.4.

/~

/
/

/

Figure 7.4: Transitions and transition rates with mobility, (a) for a state in the interior
of the state space and (b) for a state on the boundary of the state space
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The balance equations for states on the boundary are different from those for
states in the interior ofthe state space. Therefore the stationary distribution is altered.
Qualitatively the number of calls present in the cells is slightly lowered, but is not
possible to solve the new balance equations analytically. As a first approximation we
use distribution (7.2). This can be justified if the probabilities for the boundary states
are small, i.e. if l « N. We obtain for the probability of droppingu:

N

Pdrop = ~Lip(i, N),
n ;=0

(7.4)

where n is the average number of calls in a cell

n = ~i:i»+ j)p(i, j).
;=0 j=O

(7.5)

To check whether this gives the correct numbers we have written a computer program
to compute numerically the stationary distribution. In the next section the results of
these computations are compared to the results obtained for the second scenario.

7.3 DistinguiShing between fresh and hand over calls

In the previous section we have not distinguished between new incoming and hand
over calls. As remarked before it is much worse to drop an existing call than to reject
a new call. At each base station we want to reserve some space for hand over calls.
The simplest, and definitely not the best, strategy is to fix a certain capacity for hand
over calls only. Therefore we have

(7.6)

where the capacity of the base station, N, is divided into capacity for fresh calls,
NI' and capacity for hand over calls, Ni: At a certain time instant the state of our
two-base-station system is characterized by the four tuple (n{, n~, n{, n~), where
n{ denotes the number of fresh calls in station number i and n7 denotes the number
of hand over calls in station number i, i = 1, 2.

Like before we can write down the balance equations that yield the stationary
distribution. From each state in the interior of the state space there are no less than
ten possible transitions. Therefore we refrain from listing the balance equations. The
solution to these balance equations do not take a nice form like (7.2).

However it is possible to obtain the probability of blocking explicitly. Thereto
we look at the two dimensional subsystem (n{, n{) consisting only of the parts of
each cell reserved for fresh calls. To this subsystem a hand over call is exactly the
same as a terminated call. After all the subsystem doesn't see where the call is going,
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it just sees it disappear. Therefore the subsystem has a state space as in Figure 7.2,
with J-t replaced by J-t + v and N replaced by Nf. The stationary distribution in the
subsystem is given by

(
A )i+ j

-(..) Il+v
P I,j = C .,., '

I.j.

where p(i, j) denotes the stationary distribution in the subsystem, irrespective of the
distribution over the capacity for hand over calls.

(7.7)

p(i, j) = L p(i, k, i.m).
k,m

(7.8)

To compute the probability of dropping we have written a Mathematica program 1,

which computes numerically the stationary distribution. This allows to play with the
parameters to obtain reasonable figures for blocking and dropping rates.

As an example, the following table shows the results of a number of computations
on a small cell. Each computation was performed using the same total capacity, i.e.
N = 10 and using the same parameter values, i.e. u. = 0.1, A = 0.4, v = 0.04. In
Figure 7.5 we show the probabilities in one cell for one of these computations.

Strategy Pb1ock(%) Pdrop(%)
According to (7.2) 0.531 0.531
Correction to (7.2) making no distinction 0.519 0.493
Using distinction, N, = 10 0.057 100.
Using distinction, Nf = 8 0.634 20.641
Using distinction, N, = 5 9.801 0.263
Using distinction, Nf = 2 51.414 0.000

In this example, we see that our second strategy can reduce the probability of
dropping, but the probability of blocking is increased enormously. Therefore we
conclude that for the model of two cells this strategy reduces the probability of drop-
ping but in the same time increases the blocking probability. This is due to the fixed
number of available channels in an antenna. In practice we have interaction between
one cell and the neighbouring cells. Similar balance equations can be written for
the system of seven cells or more. In order to keep the blocking probability less
then a desired value using the proposed strategy, we have to increase the density of
antennas; this is the impact of the user mobility on the density of base stations.

7.4 Conclusions

• We have concentrated on a two cell system. To extend this to a seven hexagon
system would still be doable, but the extension to a larger system requires large
scale computations.

lThis program is available on request.
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Figure 7.5: Probabilities in the first cell when NI = 5, Nh = 5, A = 0.4, IL =
0.1, v = 0.04

• Setting up a small model with maple gives quickly some insight in the qualita-
tive behavior.

• Additional modeling is required. We would like to investigate whether it is
possible to treat a seven hexagon system as a single antenna with adjusted
parameters. This would scale done the complexity of the computations.
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