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Abstract

In this contribution the deformation of panels, used a.o. in furniture, is discussed in re-
lation to the moisture content. It is shown how the variations in temperature, water and
resin concentrations during the pressing process of the panels can be modelled. The panel
deformation is modelled using linear elasticity theory. An explicit analytical expression for
the long term behaviour of the water concentration is presented.

Keywords

Panel deformation, Moisture content, Linear elasticity theory.

1 Introduction

Trespa International BV manufactures high quality panel material. This material consists of
polymerised resin reinforced with wood fibres or sulphate paper. These panels may deform due to
variations in moisture content and the motivation for this study is to obtain mathematical models
which help to explain this deformation.

The purpose of this report is to gain a better understanding of the behaviour of TRESPA panels.
The modelling concerns the three processes of resin curing during pressing, moisture movement
and panel deformation. These three processes depend on each other. The resin curing provides
the initial water concentration for the moisture movement model. The moisture distribution itself
is an input to the panel deformation model.

The contents will now be outlined. Section 2 describes two mathematical models for the resin
curing process. The first model was discussed in a previous study [?]. The second model describes
the temperature, concentration of the water and resin during pressing. In Section 3, the movement
of water is modelled by a linear diffusion equation. A numerical solution is included. Section 4
derives a new mathematical model for the panel deformation based on linear elasticity. After long
time periods the water concentration will be linear across the panel, an analytical solution for the
deformation is presented in this case.

2 A thermo-chemical model for resin curing

In this section we briefly describe two models for resin curing during the pressing of TRESPA-
panels; a more elaborate description of the first model is given in [?]. During the manufacturing
of panels, sheets of resin impregnated paper enclosed by two layers of padded paper are pressed
together. A schematic, three-layer model of a panel is given in Figure 1. A panel thus has two
polsters of padded paper and a core consisting of impregnated paper. During the pressing of a
panel, high temperatures are applied at the boundaries z = —h and z = h of the panel, which
causes heating of the panel. This induces a polymerization reaction in the core. Heat is released
during the polymerization, which again leads to an increase of temperature in the panel. This
process continues until the chemicals in the core are depleted.
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2.1 One species model

The curing process can be described by the temperature 7' in the panel and the concentration Cy
of chemicals involved in the polymerization reaction in the core. To keep the model feasible, we
make the following assumptions:

1. The materials are incompressible.

2. Resin curing is a first order reaction.

3. Diffusion of resin is negligible.

4. All variables only depend on the transverse space coordinate z.

The governing equations are now the following. In both polsters the heat equation holds, and in
our particular case is given by [?]

oT 0 (A(?T)’ (1)

Cp— = — | A\=—
Prar ~ 92\
with p, ¢, and A the density, specific heat and thermal conductivity, respectively, of the polster

material. These variables are assumed to be constant. In the core, heat transport is coupled with
the polymerization reaction, and the governing equations read

oT o r.0T
pogr = 52 (Vgs ) +AHKC, 2)
ac,
8t — kCl) (3)

with AH and k the enthalpy of polymerization and the reaction rate, respectively. This reaction
rate is given by the Arrhenius expression

k= Ae~Fa/RT (4)

with A, E, and R the pre-exponential factor, activation energy and gas constant, respectively.
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Figure 1: Schematic representation of a three-layer TRESPA-panel.

The model (??)-(??) has to be completed with initial and boundary conditions and conditions at
the interfaces between core and polsters. As initial conditions, we choose a constant temperature
T and concentration C;. At the boundaries, the temperature is given as a function of time, i.e.

T(—h,t) =Ty(t), T(ht)=Ts(t), t>0. (5)
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Finally, at the interfaces we impose that both the temperature T' as well as the heat flux A0T/9z
are continuous. This results in the conditions

T(2—,t) = T(z+,1), (Ag—f)(z—,t) - (A‘Z—f) (24,1), 2= 21, 2. (6)

These conditions mean that there is no accumulation of heat at the interfaces.

As an example, we have computed a numerical solution of the system (??)-(??) using the finite
difference method. More specifically, we used central differences for space discretization and the
¥-method for time integration [?]. For more details, the reader is referred to [?]. In this example,
we have a constant initial temperature and concentration. Then, at ¢ = 0, a high temperature
is applied at the boundaries of the panel. The evolution of the temperature and concentration
profiles is shown in Figure 2. Initially, the temperature increases due to conduction and heat
production and at the same time the concentration decreases. When the chemical species are
depleted, the temperature profile tends to the constant steady state.
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Figure 2: Temperature and concentration profiles in a TRESPA-panel.

2.2 Two species model

A slightly more sophisticated model for resin curing will now be introduced. The dependent
variables are the temperature 7', the concentration of water C' and the concentration of resin C'.
There are now five layers in the model as shown in Figure 3. In the polster and metal regions, the
standard heat equation (??) applies. In the core, we have (?7)-(?7?) and

oc 0 oC

== —(D52) +kC 7

E ( 0z) "L ()
where 7 is a dimensionless number representing the rate at which moisture is produced relative to
the rate at which chemicals involved in the polymerization are reduced. The thermal conductivity
is now taken to be of the form

M G L Chit,y
ACy) = { Ay C1 > Copit,y
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Figure 3: Schematic representation of a five-layer TRESPA-panel.

where C\.;; is an experimentally observed constant and the diffusivity of water is given by
D(T) = Bexp(-T,/T)

where B = 3 x 107°m?s~! and T = 5245K. The boundary conditions are (??) and the interface
conditions between the core and metal are given by (??) and

oC
E(z,t)zo, Z = 21,%3. (8)

3 Moisture transport in panels

In this section we outline a model for the transport of moisture in a panel. A non-uniform water
distribution leads to non-uniform stresses in the panel, and this will lead to warping of the panel.
This will be described further in the next section.

For moisture transport in panels, we adopt a particularly simple model, viz. we consider the panel
as a single layer of material in which diffusion of water takes place. Further assumptions are:

1. Swelling or shrinkage in the transverse direction are negligible.
2. The material is homogeneous.
3. The concentration of water only depends on the transverse space coordinate z.
Under these assumptions, the diffusion of water in a panel is governed by the equation [?]
oC 0 oC
5 =5-(D52). 9)
ot 0z 0z
with C the concentration of water and D the diffusion coefficient. The diffusion coefficient gener-
ally depends on the temperature 7', but in our model we assume it to be constant. A given initial

concentration Cy(z) and Dirichlet boundary conditions complete the problem; we will not specify
these any further.

As an example we have computed a numerical solution of (??) using central differences for space
discretization and the ¥ method for time integration. The result is presented in Figure 4. This
figure typically shows the evolution of concentration profiles starting from a constant initial con-
centration, when at ¢ = 0 the boundaries are exposed to higher concentrations of water, due to
moisture in the environment.
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Figure 4: Water concentration profiles in a TRESPA-panel

4 Panel Deformation

In this section the warpage of Trespa panels due to humidity effects is studied. We assume that
the Trespa panel can be modelled as a beam. This model is derived under the assumption that
the material is linearly elastic [?] and that gravity is negligible.

We may assume that the centre of the beam is clamped due to symmetry considerations. The
coordinate system used is sketched in Figure ??7. We define the displacement vector (ug,u.) =

Figure 5: The geometry of the beam model.

(u,w). There are five unknowns in the warpage problem, namely the stresses in the z and z-
direction, t;4, t,, and t.., and the displacements v and w. Therefore, we need five equations to
determine these variables.

First of all, conservation of momentum yields

6tzz at:tz _
or 9. 0 (102)
Oty. Ot..
B + 5, 0. (10b)
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To close the system we need three additional equations, which follow from the constitutive be-
haviour of the material. We define the deformation tensor as follows

o 1 a’u,l 6Uj .
€ij = 5 (am] + 8m1> ) )=,z (11)

The deformation tensor is assumed to be split up into a part which represents the deformation
caused by elastic effects and a part that represents the deformation caused by expansion of the
material due to swelling:

€ij = 65;1) + CE;M) (12)
In our model, we assume that the deformation of the panel due to humidity is linearly dependent on
the concentration of moisture inside the material. Experiments carried out by Trespa International

B.V. support this assumption. This leads to the the following set of equations for eE;w)

els) = a,C, (13a)
elsw) =0, (13b)
egz’” =a.C, (13c)

where «, and a, represent the swelling in the z and the z direction, respectively. We note that
this model is analogous to thermoelasticity except that in this case the strain due to moisture is
anisotropic.

Because the deformations are small, we assume the material to be linearly elastic. Also we take
the material to be homogeneous and isotropic with respect to elastic deformations. Therefore, we
can use Hooke’s law which relates the deformations to the stresses ¢;;. This gives

(el) _ 1+v v
ey =g tii — poistkr, (14)
where E is the elasticity modulus and v is Poisson’s ratio. Substituting Eqs. (??) and (??) into
Eq. (??) yields the following set of equations for the total deformations in the plate

1+v v

€xx = Ttmc - E(tmc + tzz) + a,C, (153)
1+v

€xz = Ttacza (15b)
1+v v

€y = thz — E(txl- + tzz) + CMZC. (15C)

Combining Eqgs. (??) and (??) leads to the following set of equations which relate the stresses ¢;;
to the displacements u and w,

E ou ow

tmz = m <% + VE — (CKI + VCKZ)C> , (163.)
E 1 (/0u Ow

tm—lﬂi(&*a)’ (16b)
E ow Ou

t,, = m (E V& — (CMZ + VCKI)C> . (].6(3)

Together with (?7?), this yields a coupled set of five first order linear partial differential equations.
To complete this set of partial differential equations, we still need to derive boundary conditions.
The boundary conditions are given by the following

to. =tz. =0, on z=d4h, (17a)
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tew = te- =0, on x =1L, (17b)

= g—:; =0, on z=0. (17¢)
Here, Egs. (??) and (?7?) are stress free boundary conditions and Eq. (??) represents the clamped
end.

Since the aspect ratio is small, we try to find a solution by assuming that the normal stress
component in the z-direction, .., is negligible. With this assumption, it follows from (?7?), (?7)
and (??) that also t,, and t,, vanish everywhere. Using this, (??) gives us

u

ou

9 a,C, (18a)
Ou Ow

2 + e 0, (18b)
ow

& = OéZC. (180)

Using C' = C(z), we obtain from Eqs. (??) and (??)

u=a,C(2)x + g(z), (19a)
w = aZ/C(f)dﬁ +(z). (19b)

The boundary condition on v in Eq.(??) gives us g(z) = 0. Substituting Egs. (??) and (??) into
Eq. (?7?) gives us

a,C'(z)z +1'(z) =0, (20)

everywhere. This tells us that C' has to be linear, i.e. C(z) = A; + A2z. This corresponds to the
moisture profile after the panel has been exposed to a different concentrations on either face for
long time periods, see Section 3. Using this, we can solve Eq. (??) for h, yielding

1
l(z) = —EaxAng + D, (21)

where D is a constant representing translation. Taking D = 0 we end up with the following
expressions for the displacements

u =, (A + As2)z, (22a)

W=, (Alz + %A2z2> — %CEIAQI’Z. (22b)
Note that the second boundary condition in Eq. (??) is satisfied. We note that the equations in
this section are linear and w is only specified in terms of its derivatives, therefore the solution
(??)-(??) is unique up to a translation in w. The centre line z = 0 is approximately a circular arc
with radius given by 1/a;, As.

For a plate with a thickness of 1cm, and a length of 2m, the results are shown in Figure 77.
We have taken the following a,; C'(z) = 0.002 (h+2z) m~! and a,C(z) = 0.03* (h+2) m~! where
h is half the thickness of the plate.

The solution (??)-(??) only allows us to deal with the concentration of water as a linear
function of z. One possible technique for dealing with a general form for the concentration of
water is asymptotics. An analysis was undertaken with the small parameter being the square of
the aspect ratio. There is a boundary layer at the edge of the beam (z = L). The displacements
were not determined at leading order in the outer expansion. Further research is required.
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Figure 6: The warpage of a panel due to an asymmetric moisture content.
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