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1. INTRODUCTION

Trespa International B.V. (Weert, The Netherlands) is a manufacturer of high
quality panel material for exterior and interior uses, made of polymerized resin,
reinforced with wood fibres or sulphate paper. Typical applications are office
desk tops and facade cladding.

The production process starts with impregnating large sheets of paper with
resin. Then a pile of sheets of 8-13 mm is pressed together under high pressure
(90 bar) in a mould until all of the air is squeezed out. In simplistic terms,
the pressing of a plate occurs in two distinct stages; compression followed by
heating. This is depicted in Figure 1, where the curves show the product
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F1GURE 1. Typical thickness, temperature and loading curves.

thickness, temperature and applied load over time. During the first stage of the
process, which last approximately two minutes, the components are compressed
to within 10% of the final thickness. During this stage very little heat has
reached the components. During the second stage the temperature reaches a
critical value and the resin starts to polymerize, eventually resulting in the
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solidification of the melt. During polymerization water is formed, which is
partly dissolved in the polymer and fibers, partly squeezed out sideways, and
partly evaporated through the upper and lower surfaces.

FIGURE 2. The corner profile

The majority of the production involves the manufacture of large rectan-
gular flat plates. Here, the process is well controlled, with little failure losses.
A minority of the production consists of, so-called, corner profiles, where a
two-dimensional corner (legs of 30 cm, a lateral extension of 4 m) is made by
heat-pressing a pile of sheets, folded into a corner shaped mould (figure 2).
The upper and lower surfaces of the legs are not exactly parallel. The angle
between the legs of the inner mould is 90°, and of the outer mould 91.5°, which
is a small but critical amount more. In this way the mould slightly diverges,
such that it closes first in the corner, while the contact area between the sheets
moves from the corner into the legs. The legs are connected by circular arcs
of 10mm (inner) and 20mm (outer) radius. This shape may be modified if
necessary.

The process of pressing a corner profile is less stable than the regular flat
panel process. Density variations and surface blisters have been observed that
are supposedly due to captured air and water.

The question is to explain or clarify, by suitable mathematical modelling,
the physical processes leading to this adverse behaviour, and to suggest (ways
to obtain) more favourable mould shapes.

2. MODELS

We will adopt the hypothesis here that the reduced structural quality is primar-
ily caused by captured air bubbles and not, for example, by chemical changes
of material. Therefore, the models used will be centered around the mechanical
side of the processes, where bubbles might play a réle. They are described by
the fluid mechanical (resin) and elasto-mechanical behaviour (polymer) of the
material.

It is believed that the bubbles are trapped mainly because, when com-
pressed, the material closes in such a way that the induced pressure is not
conducive to expelling the trapped air. A description of the actual trapping
of bubbles is evidently very difficult, as it requires a kinematical or even dy-
namical model of a non-continuous material. A better approach, feasible but
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requiring a more in-depth research, would be a mixture model [7]. For the
moment, however, we will remain, for simplicity, with single component mod-
els, probably valid when the trapped air bubbles are small. Therefore, we will
evaluate below the following two models: one describing the viscous flow part,
and one describing the elastic solid part. At this moment it is not clear yet
which description will be most relevant to the original questions. On the one
hand, the flow of the heated resin and the trapping of bubbles is a process for
which nothing but a viscous model appears to be appropriate. On the other
hand, the resin polymerizes, and during the pressing process mainly air (and
very little resin) is driven out of the (open!) sides, which suggests that a solid
(elastic) model might be in order.

3. VISCOUS CONSIDERATIONS

3.1. Introduction

As previously mentioned, the pressing occurs in two distinct stages, compres-
sion followed by curing. The following section is concerned only with the first
part of the production process, the compressing stage. In particular the vis-
cous flow of the resin is investigated. The first model described deals with the
shearing effect caused by the relative motion of the paper sheets, to determine
whether this can tear the paper and lead to cracks appearing. The second
model deals with the viscous squeeze flow. The reason for studying this is
that it is assumed a considerable part of the densification is due to air bubbles
being forced out of the resin. This is backed up by experimental observations
of vapor being ejected, although little resin is seen to be ejected. However, it
is quite likely that the viscous resin is pushed into the paper and trapped (or
at least considerably slowed down). Air bubbles may not take the same path,
either because their surface tension makes it more difficult to push air through
the narrow paper pores or that air may simply move more rapidly between the
paper layers and so be more easily ejected before becoming trapped.

To remove trapped air bubbles the pressure gradient must be reasonably
large and acting to push the fluid outwards, to force the bubbles through the
viscous resin to the edge of the plates. For this reason the pressure profile in
the resin layer is sought. The complication of the resin being forced into the
paper is not investigated here, however, an analysis of this situation may be
found in [1].

3.2. Cracking due to shear?
During compression of a corner piece there must be some relative motion of
the paper layers as the composite adjusts from a flat shape to a curved one.
The only significant force opposing this motion is the viscous resistance of the
resin. In this section an order of magnitude study is carried out to determine
whether this shear force is sufficient to tear the paper and so produce cracks
in the finished product.

Geometrical considerations indicate that the relative distance, L, moved by
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two adjacent sheets of paper bending to a right angle is
L~ in(ry — 1), (1)
where r; and r5 are the radii of curvature of the paper sheets. In the current

detail

FIGURE 3. Geometry for pressing a corner piece.

problem the radius of curvature of the corner is typically 10 mm, the thickness
of the resin layer is 10 yum. Hence locally the problem can be considered as
one of Couette flow, see Figure 3. In which case standard viscous flow theory
indicates that the shear stress in the fluid is constant and given by

_nu
=T (2)

where 7 is the viscosity and H is the distance between the two surfaces, H ~
ro —ry. The velocity U is given by the length-scale L divided by the time-scale
for the flow, which is here taken as 10s. This leads to

_iﬂ'-H_ﬂ
TTHT-10 10 3)

so the shear stress is independent of the layer thickness. A typical value for the
resin viscosity is 2000 cP or 2 Pas, so the shear stress is of the order 0.16 N/m.
Trespa quote the breaking stress of the paper used in the pressing process as
20x105N/m?, a sheet of thickness 100 ym therefore requires 2x10° N/m to
tear it. The analysis therefore shows that the stress caused by the shearing of
the resin is considerably smaller than that required to tear the paper and it is
highly unlikely cracks will appear due to this mechanism.

3.8. Viscous squeezing problem

As the plates compress the resin/paper composite a viscous squeeze film will
occur between each pair of paper sheets and the resin will be forced either into
the sheets or outwards. To understand the compression of the composite, it is
first necessary to understand the basic component of the system, a fluid being
squeezed by the normal motion of two solid surfaces. This is the focus of the
present section. The main aim of the analysis is to determine the pressure
gradient within a resin layer, since this will act to expel (or retain) air bubbles.
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FIGURE 4. A viscous fluid squeezed between two plates located at z =
hr(z,t), z = hp(z).

Consider the problem of a viscous fluid being squeezed between two solid
surfaces, as depicted in Figure 4. Without loss of generality the bottom surface
can be assumed stationary, whilst the top one moves under a load P, which
may vary with time.

In 2-D the standard lubrication approximation reduces the Navier-Stokes
equations to

Op 0%u
% = ﬂ@a (4)
dp

The continuity equation remains unchanged under this approximation:

Op  Opu)  9(pw) _
o " or T ar O (6)

Appropriate boundary conditions for the velocities v and w are
u(hr) = u(hp) =0, (7)
Ohr
h =0 hr) = —
w(hp) o wlhr) =,
where hr(z,t) and hp(z) are the positions of the top and bottom surfaces.
Equations (7) and (8) specify no-slip on the solid surfaces. The pressure must
be ambient at either end of the contact, i.e. p(£L) = p,. In the following the
ambient, pressure will be set to zero. The total load P is the integral of the
pressure over a surface P = ffL p(z)dz. The density is assumed to depend
only on pressure and so p(£L) = p,.
Equation (5) indicates p = p(z,t) and hence p = p(p) = p(x,t). Equation
(4) may be integrated immediately to give the velocity

u=——(z—hg)(z — hr). 9)



42 Tim Myers & Sjoerd W. Rienstra

Integrating the continuity equation between z = hr and hp leads to

dp d hr dhr
(b —he)+ - | dz| +p5 L = 0. 10
o T w+aprB“ T (10)
Substituting for the velocity and rearranging provides the governing equation
for the squeeze flow of a compressible fluid:

0 8[p8p

g othr = )] = 57 (55, 5 e — o] ()

For all cases the dependence of the heights on z should be known (the
shape of the press) and for simple configurations equation (11) may be solved
analytically. Three such scenarios are worked through in the following sections.
However, in general, equation (11) will require solving numerically, this is not
carried out in the present work.

Incompressible flow between flat plates

To illustrate the method described above, the simplest configuration, that of
an incompressible squeeze film between two flat plates, will be described in this
section. In which case the position of the plates is described by

hg =0, hy = h(t), (12)
and equation (11) reduces to
Oh_ D (1 or),

ot 0x\12no0x
Since h = h(t) this may be integrated immediately. After applying the sym-

metry condition Op/dx = 0 at x = 0, this gives an expression for the pressure
gradient:

op 12nfzx

ox  h3
where f = Oh/0t. This shows that the pressure gradient increases linearly away
from the centre, p oc . The consequence for bubble motion through the resin
is that near the centre there will only be a small force to cause movement and
this is where bubbles are most likely to be trapped. Away from the centre the
force increases and so bubbles near the edge of a plate are likely to be removed
relatively rapidly.

The pressure in the resin can be determined by integrating (14), subject to
p(£L) =0:

(13)

(14)

p(x,t) = 6;L7—3,f(m2 — L. (15)

This still involves the unknown function f(¢) which must be determined by the
load condition

L
P:/ mm:—&ﬁﬁ. (16)
L
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So the pressure at any time ¢ is given by

3P, , N
p(z,t) = m([f — ). (17)
Note that the load P applied to the top plate is a known quantity, which may
vary with time. The film thickness at time t is determined by integrating f.
For the case of constant load this leads to the classical expression for the height

variation of an incompressible squeeze film

1 Pt \ Y2
h(t) = (h_?) + m) ; (18)

see [2, 3] for example. With a time-dependent load, as is depicted on Figure 1,
the film height equation requires solving numerically.

Another classic example of a squeeze film is the converging/diverging bear-
ing. The diagrams of presses provided by Trespa indicate that this is also a
relevant situation to study, however since the analysis is similar to that de-
scribed above it is not worked through here. The main result of interest is
that the pressure in a converging bearing is similar to that of equation (17) but
flattened in the centre and steeper near the edges. Consequently, the central
pressure gradient is less favourable to removing air bubbles than the flat plate.
A diverging profile has the opposite effect.

Quadratic profile plates

As an approximation to the true shape of the plates when manufacturing a
corner the relatively simple case of a quadratic profile will be considered in this
section:

hr = h(t) + bx? (19)
hg = az?. (20)

If the corner sections are thought of as approximately circular, as depicted in
Figure 3, with radii 71 and r» then b ~ 1/2ry, a ~ 1/2r5. The physical case
of interest to the present study has r; < rg, so a < b. Again the fluid will
be assumed incompressible. To simplify the analysis the z co-ordinate will be
shifted to ¢ = z — bz?, so

hy = h(t) (21)
hg = (a—b)z* =Bz (22)

Equation (11) may be integrated, subject to a symmetry condition at = 0,

to give the following expression for the pressure gradient:
0 12
op _ _12mfz (23)
0r  (h— Bz?)3

Due to the symmetrical nature of the problem, the pressure gradient must
always be zero at the centre and bubbles are likely to be retained here. Away
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from the centre equation (23) shows that when B > 0 the pressure gradient
will decrease (since f < 0) monotonically away from the centre. The possible
singularity, when # = \/h/B, cannot occur since this implies the surfaces
have come into contact, which is only possible in infinite time. When B < 0
the pressure gradient decreases away from the centre to a minimum at xz =
++/H/5|B| after which it increases to an asymptote at dp/dz = 0. In this case
the pressure gradient over most of the central region (except in the vicinity
of x = 0) is large and should force air out rapidly. However, as the bubbles
approach the edge of the contact region the pressure gradient becomes small
and it is possible the bubbles may slow down sufficiently here and not be
expelled.

Equation (23) can also be integrated analytically to provide an expression
for the fluid pressure:

nf 1 1

P@t) = =5 |\ =B~ =B 24)

As in the previous example this requires integrating to determine f in terms of
the applied load P, which in this case is assumed constant. This leads to, for
B <O0:

;- _PIB h/BIB|(BL? + h)? (25)
31 arctan(L+\/|B|/h)(BL? + h)? — \/h[B]L(—|B|L? + h) ’
and for B > 0:
f= PB hvhB(BL? — h)? (26)

31 arctanh(BL/vhB)(BL? — h)? — VhBL(BL? + h)

The position of the top plate is determined by numerical integration of 0h/0t =
f, with f given by either (25) or (26).

Quadratic/linear plates

As depicted in Figures 2 and 3, a corner profile is closely approximated by an
approximately circular central region joined to an outer, straight section. This
may be represented approximately by the form

hr = h(t) + bx? lz] <1
= h(t) + 2al(|z| — 1) + bl* 1< |z| <L
(27)
hp =az? lz| <1
=2al(|z| — 1) + al? 1< Jz|<L.

As in the previous section b ~ 1/2r1, a ~ 1/2ry where r1, 75 are the inner and
outer radii of curvature of the central region. Shifting the z-coordinate such
that

¢ =z—ba? lz| <1

= 2 — al(j] — 1) — b2 1< 2| <L (28)
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transforms the plate positions to

hr =h(t) Ve
hg = (a—b)z? |z| <1 (29)
= (a —b)I? 1< Jz|<L.

The problem is then reduced to a combination of those of the previous two
sections.
Setting B = a — b the pressure gradient in the two regions is determined as

Op 12nfx
9z (h— Ba?)? ol <1
12nfx
- (h_"iBlm I<|z|<L. (30)

Note, the discontinuity in the gradient of hp and hp at = [ will be reflected
in a discontinuity in the gradient of dp/dz. The corresponding pressure is

__3nf 1 1 6nf(L? —1?)

_F((h — B2 (h— Bm2)2) T (h— B |z <1 o
_ (=) e <t
~ (h—BI2)3 < <L.

As | — 0 equations (30, 31) reduce to the results for linear plates, as I — L the
quadratic plate results are retrieved. The total load is, for B < 0,

p _ _3nf arctan(|BJL//RIB)(IBI® + h)* — /AIBI(=|BII> + h)

|B| hy/h|B|(|B|l* + h)? (32)

8nf(L* —I%)

~(h+BlR)?”

for B > 0,
p _f arctanh(BI/vhB)(BI?> — h)?> — VhBI(BI? + h)

;] hv/hB(BI? — h)? (33)

8nf(L* —1°)

~ (h—BP2)3

Since f = Oh/0t these provide the equation for the separation of the two plates
h(t), which must again be solved numerically.

3.4. Conclusion and results

In section §3.2 a simplified model for the shearing of a paper/resin system was
analysed. Assuming Couette flow, an order of magnitude analysis indicates
that cracking will not occur due to the shear of the very viscous resin. Since
the induced stress is so much smaller than the required breaking stress it is
clear that even if modifications are made to model the flow more accurately
the changes will never result in a sufficiently large stress to tear the paper.
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In §3.3 a squeeze film model is investigated in order to calculate the pres-
sure within the resin. It is assumed that a sufficiently high pressure gradient
will act to drive bubbles of trapped gas from the resin, leading to the appro-
priate densification. Three examples are worked through in §3.3-3.3. The first
of these details the classical squeeze film between two flat plates. The prob-
lems described in the latter two sections cover quadratic profile plates and a
combination of quadratic and linear ones. The analysis of the quadratic and
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FIGURE 5. Variation of height h(t) for first 120s.

quadratic/linear profile problems led to an ordinary differential equation for
the height h(t), which required solving numerically. The pressure and pressure
gradient may then be determined from equations (23, 24, 30, 31).

Figure 5 shows the variation of height h(t) over time for a press with load
P =100N,L =0.5m,! =0.25m and B = 0.1 m~" for all three cases discussed
earlier. As expected all the height curves decrease in a nonlinear fashion, with
an initial rapid decrease followed by a long slow settling period. This is similar
to the experimental height decrease displayed in Figure 1. Of the three curves
the one corresponding to the linear plate settles most slowly, the quadratic
plate settles most rapidly.

The pressure profiles are shown in Figure 6 at time ¢ = 120s. The problem
of squeezing a fluid between two flat plates leads to a parabolic pressure profile,
with a maximum at x = 0 of approximately 150 Pa. The quadratic plates, in
this example, give a very high pressure near the centre which decreases rapidly
to an almost negligible value after z = 0.35m. Decreasing the magnitude of
B reduces the height of the central peak and increases the value at larger z,
until, as B — 0 the linear profile is retrieved. The combination of quadratic
and linear plates leads to higher pressures than the purely linear case near the
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centre and lower values further out.
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FIGURE 6. Pressure profiles during later stages of pressing process.

The quantity of greatest interest to the present study is the pressure gra-
dient, this is depicted for the three cases in Figure 7. The flat plates show a
linearly decreasing pressure gradient which will act to expel air more rapidly
the further away it is from the centre. The quadratic plates give a very high
pressure gradient over the central region (except in the close vicinity of z = 0),
which will act to expel air very rapidly from this region. However, further out
the pressure gradient becomes very small indicating the possibility of bubbles
becoming trapped. Decreasing B will help alleviate this effect. Finally, the
linear and quadratic combination incorporates the desirable features of the two
separate cases. The pressure gradient is high near the centre. Following the
trend of the quadratic plate profile, after reaching a minimum the magnitude
decreases until the least effective point for removing air is reached where the
linear profile is adopted. After this point the magnitude of the pressure gra-
dient once again increases. With this form of plates there are therefore two
likely places for bubble entrapment to occur. The first is at the centre where
Op/0x = 0, the second is where the different profiles join and the magnitude
of Op/Ox reaches a local minimum value. Adjusting the shape of the curve
defined by B and the join position ! this minimum value can be altered and
so help prevent entrapment in this region. Preliminary calculations indicate
that decreasing B (i.e making the corner tighter) or increasing [ increases the
central pressure gradient but reduces the pressure after the join. Increasing B
or decreasing [ has the opposite effect. The optimal choice will be one which
gives an initial rapid rise in the magnitude of the pressure gradient but does
not allow the gradient to become too small near the join.
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FIGURE 7. Pressure gradients during later stages of pressing process.

The consequences for a press with a converging or diverging form, have
not been investigated, although the mathematical model has now been set up
to permit this to be carried out relatively easily. However, work on purely
converging systems indicates that a converging press will be more likely to
entrap air. A diverging one will encourage air removal and this is the type
used in practice by Trespa.

Equation (11) sets up the problem for a compressible fluid, however only
incompressible examples have been used in the current study. There are two
reasons for this, firstly the incompressible problem is considerably simpler, but
the main reason is that to close the system a pressure density relation is re-
quired. At present there is no information on this. However, the incompressible
flow model should indicate the correct trends for pressure and height variation.
Further, it is not clear whether the actual fluid is compressed. The current
study assumed that the compression effect was due to the removal of air from
the resin, the resin will also permeate into the paper. A compressible model
would just be imitating this behaviour.

The motion of the bubbles has also not been discussed, except in a very
simple manner. Clearly an appropriate pressure gradient will act to move the
bubbles, but a relation between the bubble velocity and pressure gradient is
still required. To calculate this properly is beyond the scope of this work,
however, it is likely that the bubble velocity will be of the same order as the
resin velocity. The average resin velocity may be calculated from (9) as

Op (hr — hp)?

 Ox 12n (34)

u =

From this it may be estimated how long a bubble will take to travel from a
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specified point to the plate edge.

4. ANISOTROPIC ELASTIC SOLID MODEL
Since the compression or normal stress properties, affected by the captured
air bubbles, are expected to be considerably different from the shear stress
properties, affected by the layered structure of the paper sheets, the solid phase
of the material will be modelled anisotropically, i.e. with different Young’s
moduli in crosswise and lateral directions.

Consider the following geometry (Figure 8). Because of symmetry we only
have to consider one half of the profile. The planar part (the leg) occupies the
region

0<z<L, 0<y<a,
while the circular part (the corner area) is given by
x =-—-rsin(0+6,), y=-R+rcos(f+6),

-6, <0<0, R<r<R+a=R,,

FIGURE 8. The geometry

where 6; = in, and R and a are typically 10 mm. The small variations on
this geometry (leg angle, etc.), which are supposed to create favourable or
unfavourable stress distributions, will for the moment be incorporated by ap-
propriate boundary conditions.

We obtain for the stress tensor 7 (with elements ¢;;) in the planar config-
uration the following constitutional stress-strain relations [8]

o0& on G(8§ 877)

zT L oz’ yy C 6y’ Ty ay oz
where e, + ne, is the displacement vector, and the Young’s moduli in cross
wise (E¢), lateral (EL) and shear (G) direction are related by

(35)

2G < Ec K Ey,.
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t;; is the stress applied at the side with normal e; in direction e;. The Poisson
contraction factor is assumed to be zero: v = 0. If the material were isotropic,
we would have 2G = E- = E,. Boundary conditions will be

at y = 0: E=n=0 (no slip),
at y = a: §=flx), n=-g(),
for z — oo: &n—0.

A suitable first choice will be a simple displacement f(z) = g(z) = 16v/2.
In the circular part we have, with ue, 4+ vey the displacement vector,

U 10v 1 ov 10u 1
trr = B, , tep=FE (_— ) t, :G(— ————) 36
Cop o= Eigg T i) e =GlG gy ) (9
Boundary conditions will be
at r = R: u=v=0 (no slip)
at r = Ry: ZW cos(nb), U—ZZ sin(n@),
where use is made of the symmetry at & = 0. A suitable first choice seems to
be a simple displacement u = —§ cosf, v = dsinf.
The two regimes are connected at x = 0, § = —6; by conditions of continu-

ity: u =9, and v = €.
Because of equilibrium 7 must satisfy

VT =1, (37)
in both regions. If we introduce the dimensionless, small, parameters
E G
SZE_i’ VZE—L, such that 2y <e <1,

and substitute into (37) we find the equations

§aoa +7(&yy +12y) = 0, (38a)
Yoy + Nez) +ENyy = 0, (38b)
and
Etlr + uy — %u + %uee - %(1 +7)ve + Tog = 0 (39a)
T T T T T
%ure + %2(1 +Y)ug + T%’Uge + YU + %UT — %U = 0 (39b)

where subscripts denote a partial derivative.
By expanding ¢ and 7 in a Fourier series in y

Z Xn(z)sin(ny/a), Z Y, (x) cos(ny/a), (40)
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we arrive at
X! —n*yX, —ynY, = 0 (41a)
(X, +Y!") =n%Y, = 0 (41b)

with solutions, decaying for x — oo, given by

2 2
r) =Y A;eN7 Y, (r) =Y Bjeh? (42)
j=1 j=1

where
(A} —n’y)A; = yn\; B,

and A; o are the two solutions with negative real part of
YA = (ne + v*n(n — 1))A\* + n®y = 0.

By expanding u and v in a Fourier series in 6

oo

Z U, (r) cos(nf), Z Vi (r) sin(n), (43)
we arrive at
1
eU + EU’ - —(1 +n?y)U, + —V' - —(1 NV = 0 (442)
YV + 7V' (n +DWa = UL = A+ = 0 (44b)
which has the (exphmt) solution:
ifn>1
4 4
r) = Zer)‘f, Va(r) = ZD]'T’)\j (45a)
j=1 Jj=1
where
(T4+74+X7) (1 —€X3)
bj = n(n?y —2vy -1 7
y-2v-1)
ey At — (ey + v +en®)A +y(n? = 1)2 =0;
ifn=0
A Y 1
Uo(r) = Cir™ + Cor™?, where A = o (45Db)
and if n =1
r r A\ ry A
Ui(r) = C1+Cs IOg(E) +03(R_a) +C4(}_3) ) (450)
c
r T\ T\~
Vl(r) = D —|—D210g(}—3) +D3(R—a) +D4(E) )

1 1\l/2
where A\ = (1 + - + ;) and
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(14+79)(D1 + Cr) = —yC, Dy =-Cy,

YD3 =e(1+v+M)Cs, yDy=¢e(1+v—\y)Cy.

An example of a very simple shape, with just u(R,) = —d cosé and v(R,) =
d sin 6 such that we have only the n=1-term, is given in figure 9. The parameters
are not chosen from any measurement, but hopefully not too unrealistically:
€ =0.03,y=0.01, R=10, R, =20, and § = 1.

F1GURE 9. Ui(r) and Vi(r) for 10 < r < 20.

A detail of interest is the following boundary layer behaviour. Since e
and v are small, A is invariably a large parameter. Consider for example the
n=1 -term. Since variable r is always between R and R,, the term (r/R) > is
practically absent everywhere, except near r = R. The same is true for (r/R,)*
near 1 = R,. This suggests strong gradients in displacement just below the
surface of the material, which might well be responsible for residual stresses
and hence an uneven surface, maybe even blister formation or cracks in the
surface.

This is evidently the result of the relatively low resistance against shear.
Any shearing force applied at the surface results into a deformation of the
material only near the surface.

Further results are possible only after acquisition of numerical values of the
various problem parameters, and the programming and numerical evaluation
of the present solution.

5. RELEVANT LITERATURE

The problems described by Trespa have parallels in other industrial processes
and, while there was no time to investigate all the areas, it is worth pointing
out the relevant literature.
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The cracks which appear in the finished product do not occur during the
viscous stage and so must occur when the material is hot. In which case it is
possible that the cracks appear due to the residual stress calculated in §4 or
temperature effects. If temperature variation is the culprit it is well known that
thermal stress is proportional to temperature gradient and there are numerous
texts on elasticity which describe this [4, 5].

Blistering is a problem frequently encountered in the paint industry and for
a similar reason as in the present problem. The paint layer forms a skin which
prevents entrapped gas from escaping and so a bubble or blister forms under
the skin. A good survey on such problems may be found in [6].

Flow through a porous media, such as paper, has been mentioned already
[1]. This work was related to the production of formica. Further information
on lubrication flow into a porous media may be found in [2].

REFERENCES

1. TAYLER A.B., Fluid flow between a roller and absorbent compressible pa-
per. Q. Jl. Mech.Appl. Math 31(4) pp. 481-495, 1978.

2. CAMERON A., Basic lubrication theory, 3rd edition, pp. 143-144. Ellis Hor-
wood 1981.

3. Lancrois W.E., Slow viscous flow, chapter IX. MacMillan 1964.

4. Love A.E.H., A treatise on the mathematical theory of elasticity. Dover
1944.

5. LANDAU L.D. & Lirsurtz E.M., Theory of elasticity. Pergammon 1986.

6. KornuMm L.O. & NIeLSEN H.K.R., Surface defects in drying paint films.
Prog. in Org. Coatings 8 pp. 275-324, 1980.

7. BOWEN R.M., Theory of mixtures, Continuum Physics 3, A. CEMAL ERIN-
GEN (eds.), Academic Press. New York 1976.

8. SOKOLNIKOFF 1.S., Mathematical theory of elasticity, McGraw-Hill, New
York 1956.



